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I. INTRODUCTION

When a ship travels with constant velocity along the surface of
a liquid, it creates behind it a wake which i called a "ship wave"
pattern. A similar pattern is produced by a submerged cbject moving
parallel to the surface. The usual analyses of such patterné apply
to liquids of uniform density in which only one type of propagating
wave, called a surface wave, is possible. We shall consider ship
wave patterns in horizontally stratified liquids in which one or more
propagating internal waves exist in addition to the surface wave.
Keller and Levy (Ref. 1) have shown that in any such liquid the ship
wave pattern is a superpositianlof separate patterns, one for each
propagating internal or surface wave. They have also obtained formulas
fur thie wave héighu and particie veloviity as functions oI position
throughout the pattern. From these formulas one can see that for a
submerged object the patterns correspending to scme of the internal
waves can have larger amplitudes than that correspending to the sur-
face wave. Therefore we shall examine the internal wave patterns in
'datail for a simplified, but realistic density profile in which in-
finitely many'propagating internal waves occur. Previously Hudimac
(Ref. 2) studied the special case of a two-layer fluid in which Jjust.
one propagating internal wave exists.
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II. WAKE GEOMETRY

To describe the wake of a horizontally moving object, we replace
the object by a point which we call the source. . We introduce cartesian
coordinates in the horizontal x,z plane containing the scurce, with
the x-axis along the path of the source and the origin at the positicn
of the source at time t = 0. If the speed of the scurce is -v then
the coordinates xo(t‘J, zo(t'} of the source at time t’ are

xO(t') LT zO(t‘) =0 (2:1)

We wish to detemmine the wake corresponding to waves of a partic-
ular type emitted by the scurce, i.e., to the surface wave or to the
n-th internal wave, We suppose that the source emits waves of tnis
‘type with all frequencies @ and that the wave has a definite propaga-
tion constant or wave number k. It is convenient to express w as a
function of k, )

w = wlk) (2.2)

The functional relation (2.2) is determined by the density profile,
and will be considered later.

Let us consider the phase ;ﬁfX,Z,k,T) at the point X,z at time
t = 0 of the wave of wave number k emitted by the source at time -7,
T 2 0. If the wave is emitted at phase zero then

-¢(x,z, k,T) = kr - wr (2.3
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Here r is defined by

r= {[x—xc(--r}}z + z2)F et "‘(_2'.74) i

We seek those values of k and t for whi h 2 is stationary. This

requirement yields the the two conditions* ; :
0=—dg=r-mk? (2.5) :
0=-@1=kr - ' (35)'

From these equations we find that

/T =_cg = wm = ; | ; | - : } (2.7)

v(xo-x)/r e = w/k. A X (2.8)
Hezre we have introduced the group velocity cg and the phase velocity

g 39 ey Foo FA mN oD rA Ay Prymdad e 13 Y
A u;a..n.ln\.u -y il .-.u-l- q..-.‘c.-u.....\-a..u- —h e § CRaine g ——r— e b L g

shows that the wave from the source xo(-'r),o travels to x,z at the

¢ group velocity c_. Equation (2.8) shows that the trace on the x-axis, _'
_of the straight line perpendicular to the ray frun X (--r),o to x,z,_'__

travels with the source veloci'cy -V.

The two equations (2.7}, (2. 8) detemine the values nf k and T S
_ which make ¢ stationary. \'men these values are used in (2.3}, (2.3)
will yield the stationary value of the phase at each point XyZ: These

results are just Equations (11.5) and (11.€) of Ref. 1, which we have
redorived in a simpler way. We now use (2.7) to write 7 = rj‘cg and
(2.8) to write w = kc. Then we can rewrite (2.3) as

-¢ = kr(1 - c/c)) . SRR eo gy

*Letter subscripts denote partial differentiation.
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Next (2.8) and (2.4) yield, if c < v,
o™X = re/v, z = r(l -(:2/\:2)% (2.10)
From (2.1) and (2.7),

X, = vr/cg (2.11)
Let us now eliminate X from (2.10) by means of (2.11) ani then
eliminate r by means of (2.9). Thus we obtain

2 ’ 2
e )]. z = (g/k) [—9-————c i ]

e (Qv,’k) [__—é_--?::';_ I

(2.12)

Thus if ¢ s v, (2.12) is the parametric equation of the wavefront ¢ =
constant, where ¢ is the stationary value of the phase and k is the
parameter.
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ITI. LONG WAVES AND THE FAR WAKE

Suppose that for k small, the function w(k) in (2.2) has the pow-
er series expansion

®=wk - m2k2 E m3k3 o (3.1
Then

c=»l-w2k+... (3.2

cg =0, - 2w2k + ans L3.5) .

Now (2.12) becomes

L

S F s i
des ’-J.-V o e R AN PP |

X = = =
kK Z
wgk + 2wk - ... J

2 2
w 3w, w 2w, 2wiw
= (ov/k%w,) (1 - —%)+(—1§3 S -2_1—-3-)1‘ +oond|  (3.8)
v v 2 vie, -
w) - 2wkt . )(1—v'2w12_+2v'2w1w2k+ =t )”]

2
wzk - 2m3k - ke

(
z = (gv/k) [

; .
2 ®1\% 2, wu, - 2wy

=(mu/kw)(1- ) 1'("""1— +——)k+... (3.5)
2 2 ;y luJ. v -wi o

It is clear from (3.4) :and (3.5) that for long waves, for which k is
small, both x and z are large.
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To eliminate k we solve (3.4) for k and substitute into (3.5.,
abtaining

@y % ?(@wzvsx)%
z= - + ees (3-5)
e s Bl g

If w(k) is not analytic around k = 0, (3.1) is not valid and
therefore (3.6) does not apply. This is the case for ordinary surface
waves in water of constant density and infinite depth, since for them
©(k) = (gk)%. Then (2.12) becones

L
L 28v ( a ) oA :( q )‘
x——-—-c l-—-r » == - e (3.7}
(gr)= 20k i vk :

”
From (3.7 we see that % must be restricted to the range k > g/v" in

oder that z be real, so a small-k expansion is not applicable in this

Cdbe.
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IV. SHORT WAVES AND THE NEAR WAKE

For short wavzs or large k, we assume that w(k) has the asympto-
tic expansion '

w(k) = N - Nzk"z - n4k'4 = Cae (4.1)
Then | o Mt N_zk"‘ P s (4.2)
c *2‘u‘k_3+4ﬂk's+ (4.3)

g - I2 + 4 L) - T .

Upon using (4.2) and (4.3) Zn (2.12) and (2.13) we obtain
= s Lo | =3 3
1- Nk =N k - sas e

x = {gvix)! o ey R N )-!

= ). A ey

- atin - Jitzn - saa
By .
= (ev/K) |1 + - ) SR Sl 2 L (4.4)
S -5 i “202 -2, 5 2 s 5
el /k)[(’zli?k +4N,E77 + L7 (Q-v Eadi % SRR |
X Nt - oL ]

3 M, 2 3N, 2
cz:r€2/za-;') 1+{g—- g 'H: e e (4.5)
2 2v ; :

Solving {4.4) for k and substituting the result into (4.5) yields

Bgs: 2N° . BV.3/2
z—m (X—T‘P)f +inen (4.8)
2 :

aQ

ol s o T

et . N Sl P S
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From (4.6) we see that each wavefront g = constant Fis a cusp at X =
¢v/N on the path z = 0. .

In the case of ordinary surface waves in water of constant density
and finite or infinite depth, (4.1) does not hold so neither does (4.8).
For infinite depth (3.7) yields for k large,

z =+ g2/ + ... (4.7)
Then all wavefronts enter the origin x = 0 en the path z = 0, The

result (4,7) also holds for the finite depth case when the density is
constant.

10
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V. EXAMPLE

k. THE DISPERSION EQUATION

Let v(y) be the y dependent factor of the vertical component of
fluid veluecity in a time harmonic wave of angular frequency w and
waverumber k in a fluid of density po(yJ and depth h. Then v(y)
satisfies the equations

W g'lﬁz\r + kgtm'zﬂz ~l)v=0,02y2-n (5.1)
¥y ¥y
v, (0} = k%™ %gv(0) (5.2)
v{-h) = 0. k535
b & R e e B e .
Lr€ly Ay LGS, 244 = 5,18, nere o (YY) id Lhe vVeisSaia irequency tg=
iined by
N = €-9)(p0) /0, | e 824)

This problem has nontrivial solutions only if k° is an eigenwvalue.
We shall take for p (y) the following function

]

059 =0y s O2y2y

u

Py expi(NQIQ)(yl-y)] s Yy Ry ® Y, (s.5)

Py ® 0y el (/) (y;-y)] 4 ¥, 2y 2 -h




The layer between y, and y

piece-wise constant ro (5.1) can be solved explicitly. If we ignore
the term g'lnzvy in (5.1), the solution is simply

v(y) = sinh (ky + a)
v(y) =~ C cos kvy + D sin kvy
v(y) = B sinh k(;}- + h)

Herz v is defined by

iz () - 1

Condition (5.3) is satisfied by {5.8), while (5.2) yields

tanh o = mszg

- = LT = T Y s ¥ er
AL ¥a dlid ¥ LLie v el .v e

yields the four conditions

"

C cos kvy, + D =in kvy,

C cos kUy2 + U sin kvy, = B sinh ‘k(y2 + h)

-v C sin kvy; + vL cos kvy, =

-v C sin kvy2 + vD cos kvy2 =

We now combine (5.11) and (5.13) to obtain
(C cos kvy,+D sin kvy, Jeosh(ky,+a)

+v[C sin kvy,-D cos kvyl}sinh(kyl+or) = 0.

Similarly we get from (5.12) and (5.14)

12

% is the thermocline, within which N2 is
constant, and outside it N¢ = 0. Now the coefficients in (5.1) are

—pmdn Ba meaded e o

02yzy, (5.8)
Y=Y 2 ¥y (5.7)
92 zvz-h (5.8)
(5.9) )
|
(5.10) i
Thie mam:ivemani
k 4
sinh (ky, + a) (5.11) T
(5.12) =
cosh (kyl + o) (5.13) ]
B cosh k(y2 + h) {5.14) s
i
IT“
(5.15) o



[

[C cos kvy,+D sin kvy23c_osh k(y,+h)

+v[C sin kuyz—n cos kvy.‘,]_sinh k(yz-t-h) =8 (5.16)

In orcer for (5.15) and (5.16) to have nontrivial splutions for C and
D, the determminant of the coefficient matrix must vanish. This yields
the dispersion equation g

tan kv(yl-yz}[1+v2tanh (ky1+a) tanh k(y2+h)].
= vltanh (ky,+a)-tanh k(y,+h)] - (5.17)

B. FAR WRXE

Let us examine (5.17) for k small, tentatively assuming that
w ~ kc(0) as k tends 1o zero. Then (5.9) yields v ~ N/ke(0), (5.10)
yields a ~ k.czfg and (5.17) becomes at k= 0
NC'J'CY_-L-S’Q-M(CQ/{U]

- (5.18)
1% If‘c'z[yle(czjg)_}(yfh}

tan [(N/c)(y,-y,)] =

Tnis 15 an equation for C\w) wWICn [as ANIIJULely Many SOLuLiUis wikicii
we shall call cn(ﬂ), n=0,1,2,... . To describe them we write

Ns

mw ..
m; » -z <a <n/2 (5.19)

'én(o) =
Here we have int.mduced the themocline thickness s defined by
S=y -, (5.20)
Then (5.18) becomes the following transcendental equation for a:

Ne2

tan a_ =
s“ely) Gmva )27 /g1 (y om)

n

-n/2 < a, < n/2 (5.21)

13
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For n large (5.21) yields

s(h-s)

~ o 5.22
n n'rrylzﬁyszj ( )

If h> s and h >> [yzl, (5.22) becomes

an”'nu; , n> 1 (5.23)
5

For n = 0, (5.21) becomes 2 2
ofts-n)a + 223
o ga,

tan a_ = (5.24)

(] 2 2
52 + (ylag S ; Iy +h)

If \y2l <<k and N°s/g << 1, we can replace an a, by a_ in (5.24).
The resulting biquadratic equation has as its two positive soluticns

A s (5.25)
20 = =
(gn)*
R ' (5 08
[#} -Yl

Let us now use the results (5.23), (5.25), and (5.26) in (5.19)
and introduce the effective gravity g’ defined by

g = N'sws - g (5.27)
Py
Then (5.19) yields
e;(0) ~ (gh)¥ (5.28)
c'(0) ~ (g'ly !)g (5.29)
o 3 x
14
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EL]

3ince w ~ ke, it follows that cg(D)

g S IR S

cn(ﬁ)ﬂ'ig?"-_‘s—,)—%(l-- = ),n}‘b
nn]yll

¢(0) for each mode

n

C. IMERR WRKE

A (5.30)

Now we cshall examine (5.17) for k large, assuming that @ ~ N as

k tends to infinity. Then (5.17) becomes

tan kvs ~ =2v (5.31)
Since v is small, the sclutions of (5.31) are
kvs ~ nm - 2v (5.32)
By using the definition (5.2} .f v we obtain from (5.32)
: nm \2--% .. nw \24 -2 1
w=z¢£1+\m)3 ‘“]\]L;—‘im))"u-ﬂzk -...(s..ss)
Here N?_ = (nﬂf5)2N. Therefore from (5.33) we cbtain
e nm \2 .
CEETRET X (—ks-+_2) (5.34)
da Na(um)®
¢, = = (5.35)

g~ ok {k5+2}!
These results hold only for n # 0 as we see from (5.32).
D, SURFACE WAVES

2

Then v° ~ =1 and (5.17) L.comes

Tf ® tends to irfinity as k does, we must proceed differently.

tanh ks [1-tanh(kyl+u)tar.'i1 k(y2+h}] o tanh(kyfaj-tanh k(y2+h) (5.38)

15
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Thus
1 - tanh (ky,+e) ~ tanh (ky +a) - 1 : (5.37)
It follows that o must tend to += as k does. Then (5.10) yields
w ~ (kg)g (5.38)
This is the result for the surface wave.

E. DEEP OCEANS

In the oceans the depth is so large that kh >> 1 even for the
smallest practical value of k. In this case it is possible to simplify
some of the preceding vesults. For example, in (5.17), we can set
tanh k(y2+h) =1+ ... . Then the solution of (5.17) for small k can
be carried beyond the leading term given in (5.29) and (5.30) with the
result

: Yy
w = (g'lyll)akEl A 1551 k+...], n=0 (5.39)
L
= Lg9's)® s .
Bl (B =7 k+ ..., n>>1 - (5.40)

. In writing these results we have assumed that wi/g[yll << 1, since in
.the oceans this number is typically of the order 10-3.

16
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VI. WAVE HEIGHT DUE TO A MOVING SOURCE OR DIPOLE

¢ The wave height nsoume(x’z ,t) has been determined for a unit
point source of fluid moving with the constant velocity -v at the

depth Yo+ The asymptotic form of ﬂsource far from the source is
. = ; . :
n (x4vt,z) ~ 2 2:——3-§—E;¥'cos (kr-wr+m/4) (6.1)
source rﬁ (V -c ) ] :

(Ref. 1, Eq. 11.14). The sum in (1) is over the modes of wave propaga-

tion, and for each mode over the roots k and t of (2.7) and (2.8). The.

functions w(k) and c(k) = w/k are determined for each mode as in Sec-
tion 5 ard B is given by Ref. 1, (10.9).

o e [o?- h'zmmyo
= - —E— w s
L iy rllll_N?['r}'\1h‘.“fﬂ) —G\_h‘.,“y_ fﬂ}‘l

(5.2)

Here w(y) = po(y) v(y) where v(y) is a nontrivial solution of (5 1)
and (5.3)

If the source is a dipole of unit strength oriented along its

direction of motion, the wave height ndipole can be obtained by differ-

entiating (6.1) with respect to -x. Only the phase -¢ of the cosine
need be differentiated and in view of (2.5) its derivative is =K. 4
wr_ . Alternativelg we can obtain -¢, from (2.12). In either way we_'
obtain : ¥

k{C-c ) B
(x+vt,z) ~ -

TIdipole 2 2

‘vtl cc v }(v

- g
55 sin (kr—w1+z) (6.3)
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With the help of (2.3), (2.10) and (2.13), the equations (6.1)
And (6.3) can be written in the shorter forms:

A =z;% cos ($-1/4) (6.2)
Tldipole =Z§%—f sin (g-n/4) (6.5)

In the example of Cec. V, we have N(0) = 0, Vi = ¥ cosh (ky+a), and
Vky = cosh (ky+a) + ky sinh (ky+a). Then (6.2) becomes

ky
k¥ py(y,viy,)
L w 2 970 0
i g cosh o i,.,;; | nOwF (6.6)
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VII. ILLUSTRATION

A, NORMMLIZATION

Figures (1) and (2) are drawn for a density distribution consist-
ing of a "thermocline" of thickness s = ) within which N2 is con-
stant, and outside which ¥ = 0 (i.e., the case treated in Section V).
We collect the dimensicnless formulae used in the construction. ALl
distances are normalized with respect to the thermocline thickness s:

X=x/s, Y=y/s, 2= 2/s; K=ks L#:1)
" mon
and all frequencies tc the Vaisela frequency N, so that
0=w/N. €=0/X = c/(Ns), V= w/(Ns) (72.2)

F =v/fc = VK/Q is a "Froude Number," measuring source velocity rela-
tive to the speed of internal waves. We consider only F > 1.

The dimensionless amplitude along any line of constant phase
¢ =0, 2n, ... is given by

nsource 0y 2'k B

= (6.47)
A Nso/2 g

M. -k iads ;

dlgsole 2 i_z Ba{l_t ) (6.5")
where &

X 2 ; (yq2v(

ot 25 N™OQ A 90 /0 yO
B=( g cosh o Kﬂg { PO{EJ >} v
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m expression aotyn)v(yo}/poto) in (6.6') depends on the depth of the
source, AR sYo, in accordance with (5.5) = (5.8). The simplest case

" is that of the source above the thermocline, = ?; in which case we

= find
0o (Y Vly,) _ s g?
b = sinh(KYoi-uJ, tanh o = 5T (7.%)
B. NEAR WAKE

Equation (4.6) with N2 determined by (5.33) can be written in the
dimensionless form

: 3
2~ -8 |2eV) 2 (7.4)

Here ¢ = 2m, 4m,,.., and n = 1,2 ... designate successive crests fer
various modes. The cases ¢ = 0 and n = 0 are beyond the scope of the
present approximation. The wave crect can now be constructed for any

enacified n and o.

_ For given n, ¢, X, and Z, the amplituces can be obtained as follows,
First we eliminate N, between (4.3) and (4.5) to obtain z = SN+ el

with g determined by (5.35). This leads to the dimensionless formula

Z ~ a(nm? (x+2)> (7.5)

from which K can be calculated. Furthermore foom (5.33) and from the
cdefinition of F we have

2
N~1- 5(}};2) (7.6)

F= w/m (7.7)

2]
L=

.

e
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By differentiating (7.6) we find

X ~ 3nm" (e2)° o (7.8) i
: !
C. FAR WRKE E
Equation (3.6) can now Le written }‘
3

Zm (P - 3Y 02k 5 4 L) (7.9) % ‘
g

shere Fo and XG are given by

N
F, = 31 (7.10)
3
el (7.11)
b wis(v“i-wl)

The mode n = 0 ccrresponds assentially to @ thermocline displacement,
and the modes n = 1,2.... T0 thermocline distortions. We need to treat

4t s mmeme e s emden T
S wewte STRS el -

From (3.1), (5.32) and (5.40) we find

2]
1

o tg'Iyllig, w, (g’lyil)glyllfz forn=0 (7.12)

(g's)Es(nm)™> for n >> 1 (7.13)

L

w

1

(g's)¥/nm, @,

4

By using (7.12) and (7.13) in (7.10) ''e obtain

-k
F = IYlI ¥ forn=0; F =nw forn > 1 (7.14)

I}
I
¥

We now define &{n) by

8{n) =2 forn=0; 8n)=1forn>1 {7.35)

21
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‘Then from (7.11) - (7.15) we obtain

VF
X =———29_.
R 8(n)(F -1)
We now use (7.12) and (7.13) in (3.5) to get
%
3 §9F_(F2-1)

FK

From (7.17) we zan find K in terms of Z and ¢.
(5.40) we find

N ST e

a

i ey ey

(7.16)

|

2.3 A5 e

Then from (5.39) and b

a = (V/F X - 5‘1(V/ro)3x2 PO

Differentiation of (7.18) yields

m

V. | mESULIS

L T 6 T 25‘1(v390>2x3‘3

We have cemputed wakes for the following cases:

~ Source depth Yo = 30 m
Thermocline depth y, = S50 m
Thermocline thickness s =10m
'v’;xs;l; frequency . N =102

sec

(7.18) o

Figure (1) and (2) portray the near wake for the cases V = ./I0 and 10,
corresponding to source velocities v = VNs = 0,316 /5 and 1 =/s,

respectively. The X-axis extends from X = 0 to 200, corresponding to

2 hm full scale; the horizontal Z-axis is drawn to the same scale. 4
With increasing v, the wake field is rapidly concentrated along the

source axis, particularly for large n and @. We rave (improperly) - --
1‘ 2.

used the n >> ] approximation for the cases n =

is beyond the scope of the present treatment faor the near wake, and .

22
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the far wake is off-scale in the example shown. The computed source
functions diminish rapidly with distance from the source axis. Unlike
the case of a surface (Kelvin) wake, internal sources moving at quite
moderate velocities through typically stratified fluids produce in-
ternal wakes that are sharply concentrated alory the source axis.

+
4
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SUPPORTING ANALYSIS B

INTERMAL WAVES GENEPATED BY A MOVING SOUFCE

T W Milee
Institute cf Geophysics and Planetary Fhysics
University of California, La Jolle
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- ABSTRACT

The internal waves produced by either a moving body or the
collapsing wake behind a moving body in a stratified fluid are calcu-
lated asymptotically (at large distances behind the source) on the
hypotheses of small disturbances, the Boussinesq appmximation;. and
the slender-body approximation (the “ransverse dimensions of the body
and wake are small compared with the wavelengths of the significant
internal waves). : '

Explicit results are given for two, complementary models: (a)
a constant-N model, in which the density gradient is constant and (b)

- = thin thermocline model, in which the density gradient peaks sharply

in a thin laver and is elsewhere nealicihle. The internal-wave snec-

trum is ‘continuous in (&) and discrete 1n (D) however, oniy The domi-

- nant mode is included in the explicit results given for (b).

A WKB soluticn also is given for a thermocline model. This

~ approximation does not give an adequate representation of the dominant
- mode but does provide estimates of the contributions of the higher

modes that are neglected ir: the thin-thermocline model. These contri-
butions of the higher modes that are neglected in the thin-thermocline
model. These contributiens are typically negligible relative to that
of the dominant mode in the neighbourhcod of the maximum, free-surface
disturbance.
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I. INTRODUCTION

We consider the disturbance generated by a horizontally moving
source in an incompressible, inviscid, vertically stratified fluid.
This disturbance comprises the near field, which dies out more or less
rapidly with distance from the source, and the radiated field which
consists of internal gravity waves. We focus primarily on the radiated
field, but emphasize that there may be situations of interest in which
the amplitude of the near field is not small compared with that of the
radiated field. In particular. the radiated field in a steady flow
(uniferm translation of the source) appears only in the lee cf the
source, so that the near field rust be taken into account in calcu-
lating the disturbance forward of, or directly over, the scurce.

The appropriate similarity parameter for the generation of inter-
10l waves. by a moving source g the voducsd fremigncy ((ow-fnverse

Froude number)

0= NL/U : (1.1)

L i
where N is a characteristic value of the intrinsic (or Vaisala) fre-
quency of internal waves (see Eq. 2.9 below), 4 is a characteristic
length of the source, and U is its sneed. The frequency spectrum of

the internal waves is (0, N___). The intensity is typically a rapidly

increasing function of 0 (aﬂgf therefore, a decreasing functicn cf U)
for O < ﬂc, say, where QC is a characteristic value of 02, of order
unity, at which nonlinear phencmena intervene. Internal-wave genera-
tion is weak for O >> ﬂc, and as 0 - = (U = 0) the flow tends to a
plug type, in which a horizontal colwmn of fluid is pushed in front

of the body. %
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We develop the eguations of moticn in Sec. II on the hypotheses
of small disturbances and th: Boussinesq approximation (in which only
the buoyancy effects of density stratification are ineluded, the iner-
tial effects being neglected). We obtain fomnal solutions of these
equations in Sec. III with the aid of integral transfomms and special-
ize these to a moving dipole (by which a body may be approximated if
0 << 1) in Sec. IV and to a slender, collapsing wake (a region of
stirred fluid) aft of a moving body in Sec., V. We give explicit cal-
cularions of the internal-wave field for a constant-N model in Sec.

VI and for a thermocline model, in which N peaks sharply in a region
of limited vertical extent, in Sec. VII and Sec. VITI.

The constant-N model is characterized by a continuous spectrum
(since we assume the fluid to be either infinite or semiinfinite) and
may be representative for laboratory configurations, although finite-
denth effects could be important in such configurations. The thermo-
cline model is characterized by a discrete spectrum and affords a more
realistic model for the ocean; we give explicit results only for the
Jominant mode onh.the hipotherts +has tho thickriess ot the theaywacline
is small compared with both its depth and the wavelength, We give a
WKB solution for the thermocline model in Sec. IX. This sclution does
not given an adequate descristion of the dominant mode for @ thin
thermocline, but it does provide adequate estimates for the higher

modes.

The disturbance pruduced by a moving body has been calculated
previously by Hudimac (Ref. 1) for a two-layer model of the ocean and
by Kelier and Levy (Ref. 2), Lighthill (unpublished papers), and Mei
{(Ref, 6) for various models. Trere is a close analogy vetween two-
dimensional, time-dependent disturbances and three-dirensional dié—
turbances produced by a uniformly translating scurce. Keller has
obtained results similar to (but mcre general and less explicit than)
those reported here. Many reports from Hydronsutics, Inc. also deal
with the problem, both experimentally and theoretically. Hévertheless,
it appears that some of the vesults given here are new. Perhaps the
most interesting are the asymptotic approximaticns to the respective,

3l
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lateral strains produced at the free surface by the displacement
{dipole) and wake (quadrupole) effects of & suimarire that is small

campared with the length of the internal waves, i.e., G << 1. Thus
we have

9
[ngl ~ 0.4a%eb¥ (e [a-n]) —"’(r!h{u%d“*‘) .2)
5 =
]~ 0.8a"5 (e le-nl) Fagmoam% st a.n

where a, 4, d and U are the radius, length, depth and speed of the
submarine, b and h are the thickness and depth of the thermocline,

N{_‘ and Nh are the intrinsic frequencies at depths d and h, and X4

and x_ are the respective distances behind the sulmarine and the plane
in which it's wake begins to collapse.

T - n st
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II. BQUATIONS OF MOTION

We consider small disturbances in an invisecid, incompressible,
Boussinesq fluld in which the (hydrostatic) equilibrium distributions
of density and pressure are po(z) and pn(z) and z is measured positive
upwards, Invcking the requirement that particle density be conserved
and linearizirz the equations of motion, we obtain

p = no(z;i) ¥ 9 (2)-p (2)3 (2.1)
vey = m, (2.2)

ard
Py, = = % - glc, 0, pl, (2.3)

where p denctes the density, ¥ the vertical displacement of a particle,
¥ the velocity, m the source :trength per unit vnlume, and p the pres-
sure, each as a fimcticn of th: Cartesian coordinates (x,y,z) and the
time t; letter subscripts denote partial differentiation, and the
triplet {~, -, -} denotes the '..rtesian components of a vector. We
seek a solution of (2.1)-(2.3) -or a prescribed source density that is

introduced at t = 0, an imitial displacement to{x,y,z), and an initial
velceity }_:n(x,y,zj.

Let ¢ be a potential such that

P =Dy - 0P (2.42)
and

x=y, + o, 0, #] (2.4b)

Tl ety

S R



ST CTA AR s | e S . LA i

Substituting (2.4b) into (2.2) and invoking the continuity equation for

Yoo
vey, = 0, (2.5)
we obtain
8 + ¥, =m, (2.6)
where a=22 4 aj (2.7)

is the two-dimensicnal Laplacian, and the cperators ax and 8 imply
partial differentiation with respect to x and y. We have assumed that
m=0at t =0; ifm= m, at t = 0, we need only replace the right—
hard side of (2.5) by m, and m by m-m in (2.6). Substituting (2.4a,b)
into (2.1) and the z-component of (2.3) [the x- and y-components of
(2.3) are satisfied identically by (2.4a,b)], eliminating ¢ through
(2.6), and invoking the Boussinesq approximaticn {thereby neglecting

pé except where it is multipled by g), w2 obtain

= 5 B
tozee * OF + My = m (2.8)
where

22

¥ = N(2) = -gof(2)/py(2) (2.9)

" "
is the square of the intrinsic (V;isala} frequency.

We seek the solntion of (2.8) for the initial conditions (which
follow frem our definiticns)

¥ = *0’ gi= tt =m=0 (2,103

and the boundary conditions

s

1

-y
.
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lels ¢l <= ¢ixj, Iyl == (2.113)

and

¥=0 (z=20C, -D), (2.11b)

corresponding to a free surface at z = 0 (which acts approximately as
a rigid boundary for internal waves) and a rigid bottom at z - -D.

A convenient measure of the disturbsnce at the free surface is
the laterzl strain,
£
= x 0,7)d (2-12)
niawc 2¥50,7)dr,
which plays a significant role in calculating the interaction between

the internal waves and pre-existing surface waves.
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IIT, FORMAL SOLUTION
We define the transforms

¥ = mxsyY, M= mxﬁym, *0 = Exﬁyfo, (3.1a,b,c)
where

je
£¢) =f e™%%( Yo, £y = (:em;)’lf e )az (Ro > 0),

9 ki (3.2a,b)

: -1 iy
30 =f ™ yex, 3 ()4 <2-'r)'1f e'™( )am,  (3.3a,b)

P4

and similarly for J , with x and o replaced by y and B, respectively.
Transforming (2.8) and invoking (2.10) and (2.11a), we placs the resuls

Rl R TR | v

B S

2
;-

2 -3,.2.

2 S DR
& Ay = 97Tg) =0 “z'““’"'o’ (3.4)

where

Aits K..£+(‘N/c) (Ry > 0) (3.5)
K = Ja +aiz (x = 0), -(305)

and az implies partial differentiation with respect to z. The boundary
conditions for ¥ are given by (2.11b).

The Green's functlon for (2.4) and (2.11b) is detemmined by

36
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3 ' (a: . 12)c(z,c)'= 6(2—:}.. %13.2)
. and
: 6(0,¢) = 6(-D,[) = O (3.8)
¢ and yields the form»1l solution (after integrating the term in M by
A8 parts):
i 1(2)-v"tyo(2) = - 'fféccz,c)nccydc + x2a'fIE(z,c)m2(c)¢°(c)dc (3.9)

We have suppressed the explicit dependence of the transforms on o, B
and 0; the integrals are over the domains c¢f M and Vs which we assume
to be of finite extent, and & is Dirac's delta function.

Transforming (2.6), we obtain
- M), (3.10)

wnich pompletes the reduction of rthe formal solution TO tne deceniunas

- tion of the Green's function and the evaluation of iaverse transforms.
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iV. MOVING DIPOLE

We now consider the disturbance produced by the gipole
m = D3 6(x+Ut)6(y)s(z+d) (t > 0), (4.1)
which is introduced at x = y = t = 0 and z = -d and moves along the
negative-x axis with the uniform speed U. The parameter D is the
dipole moment and has the dimensions of volume (see below). Trans-
“ forming (4.1) in acecrdance with (3.1b}, we obtain

M = UDig(c-1oli) 26(z+d) (4.2)

Substituting (4.2) into (3.9) and assuming the fluid to be initially
undisturbed (#0 = Q), we cbtain

¥ = _UDiac ~(o-iall) ‘Gctz,C)ic ey (4.5)
The asymptotic limit of vy as & — =« is determined by the pole of

/~ the bLaplace transform at o = iell {corresponding to at ~ uax in the
equations of motion), which yields

st~ pe (2639 (& - o, (4.4)
where
G, () = 'Gﬂcz’;)lC o v =ial (4.5)
38
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We determine the behaviour of A, qua function of &, in (4.5) from the
antecedent requirement that RA > 0 as ¢ approaches the imaginary axis
from the right:

11 = )_Iu s K..!'i-(k/nf) (‘nr] > k) (4.6a)
= ika Lot Clo] <k); (4.6b)
where k = k(z) = N(z)/U (4.7)

(¥ also has an essential singularity at ¢ = 0, which makes no contri-
bution to the wave field, and branch points associated with the branch
points of X, qua function cf o, which contribute transients that die
out at least as rapidly as 1/t.) Taking the inverse Fourier transform
of (4.4), we obtain

y~prt ¥l

et %y G,(z) = td(x+Ut,y,z), (4.8)

where the subsbript d implies dipoie.

Svhetitiking (4 2) and (4.3) intp (3.10) and nroceeding as above,

we obtain the corresponding resulit

e
1

ups Ly FF (07606, (2)-6(2+0) ]}

¢d(X+Ut,y,"J (4.9)

Substituting (4.9) into (2.12), we obtain

-1 s 2 - Butin

1 'D3x+Ut3y f(a/8)7°C, 1] g = Tylxelic,y) (4.10)
We apply these results to: (i) small bodies of characteristic

length & and arbitrary shape and (ii) slender bodies of characteristic

transverse and axial lengths a and 4, where, by hypothesis,

38




ka = N(-d)a/u << 1 (4.131)

and

= a/{. << (4.12)

We add that a slender body for which k& << 1 is also small.

The solution to the preoblem cf a small body moving with uniform
speed U follows from the fact that the flow in the neighbourhood of
the body is locally potential (ka << 1 implies that the effects of
stratification are negligible over a region of scale a). Invcking the
well-known result that the petential flow past a body is equivalent
to that induced by a dipole at dis“ances R that are large compared
with a, we may match the potential-flow solution to the solution
(4.8) in an intemmediate region a << R << 1/k and then use (4.8) and
(4.9) to determine the far field (Rayleigh-scattering a;}pmx:imaticm).
The dipole moment is given by Lamb (Sec. 12la, Ref. 5). :

D=VsV, (ka << 1), (4.13)

where V is the volume of the body and PoVs its virtual mass with re-
spect to axizl translation in a homogenecus fluid of density 8, (-d).

The solution to the slender-body problem follows by analogy with

the corresponding problem in aercdynamics, cf. Ward (Ref. 7). Omitting
the deta’ls, we obtain

10y,8,8) ~ fS(8) 1 (xstt-2,y,2)/D)ag
(ka << 1, a << 1) (4.14)

and an analognus result for ¢, where S(x) is the cross-sectional area
cf the body, and the integral extends cver the body. We remark that

(&£.14) reduces to L if ki << 1, corresponding to the ‘act that V. <<
V fcr a slender body.
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V. COLLAPSE OF MIXING REGION

‘We consider next the collapse of a small [in the sense of (4.11)]'
mass of fluid that has been stirred--for example, by turbulence--in
such a way as to conserve its mass but alter its potential energy with
respect tc a horizontal plane through its original center of gravity,

say z = -d. Our definition of d then implies

ff (z+d)p_(z)dV = 0,

conservation of mass implies

ffj[po(2'$o)"po(z)1dv e 'fff Qo'ﬁodvg 0,

and the potenciat eneryy io yiven oy

E, gfff(zm)po(z_eo)dg < -gfff'(z+d.)pé(z.)todv

Qo -a(-a),

L

{185 S where Q is the guadrupole moment of the region.

_(5.‘1)

(5.2)

(5.32)

(5.3b)

Considering now the second integral in (3.9), ‘we expénd G(z,()

about { = -d to gbtain

Jotz e, @ = oz, -0y fiPw (et

+ Gz, -d) (G+a)N2LE I (C)eg

41
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and reduce (3.1lc) to

V) ¢ [ i 0ys0axey (5.5)

by virtue of our assumption that the dimensions of the mass are small.
Substituting (5.5) into (5.4), we find that the first integral on the
right-hﬂnd side vanisnes while the second reduces to an(-d) by virtue
of (5.2), (5.3), and the Boussinesq approximation, Substituting the
resulting cpproximation into (3.9), we obtain

: sp_a-lqru 2 Quz(-a)»c?a'3sc(z, -d) (5.6)

We apply this last result to a collapsing wake in the lee of a
small moving obsta~le on the hypothesis that the fluid in the wake is
riixed, and perhaps also augmented by turbulent entrainment, over a dis-
tance x behind the cbstacle, at which point the turbulent wake begins
to collapse and releases the potential energy UE'(XO) par unit time.
The resulting, asymptotic (a5 t — =) disturbance then is given by

t

- ”~ . - - - »
Vol e Oy INCEAY AT T3 T d TIETe TGoix.=d)} (t = =) (5.7)
ML o - =1 AtUi=A_ ¥ |

- 0

Carrying out the integration with respect to T and invgking the fact
that (as in Sec. IV above) the inverse-Laplace transform of the result
is dominated by the pole at o = ioll, we obtain

4=t ~ kzt-d)q'(ons;}Ut_xos;li(x'?/iﬁ)clcz)}

= ?q()HUt'-XO, v:2); (5.8)

where: k is given by (4.7); Gl is given by (4.5); Q'(xo) is the cross-
sectional quadrupole moment of the wake, is defined a> in (5.3b), and
has the dimensions of (length)a; the subscript q implies gquadrupole.
Similarly, .
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VI. CONSTANT-N MODEL

. We now consider the specific model of a fluid in which N (and,
hence, aiso k) is constant, This is a realistie model for those lab-
oratory configurations in which the effects -* lateral boundaries may
be neglected. It is not a realistic model f r typical oceanic config-
erations, but it dees provide an extreme complemert to the thermocline
medel of the following sections. We give special consideration to the
2imitang csse D = =, which is appropriate for oceanic applications.

The solution of (3.7) and (3.8) is given by

= ry = Sinh(az)sinh{A({+D)] .
G(z,2) = XSiFR(AD) Z (z>¢) (6.1)

mmadais £ 202 7 Zust be dsterchanaed if 2 < 0, We observe that G is

-

a meremerphic function of L%, and theretore of each of @, b and G,
for finite D, and has the Fourier-series representation

&(z,0) = -20 % Pintrne /D)2 i nre ) (6.2)
n=l  {(AD)" + {nm) '

We consider first the limiting case D - =, for which (6.1) re- .
duces to

Gl2,0) = :_"leusinh\.z {(z>(, D=w), {6.3)

which kas the branch points of 3, gqua function of each of o, B and =..

Substituting (€.3), together with the complementary result for z < (,
into (4.5), we place the result in *he forn

-ll|z+d] \, _

5,(2) = te sgn(z+d) - ke s {6.4)
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where Ay is given by (4.6). We may interpret (6.4) in terms of a
source at z = -d and an image at z = d.* We carry out a detailed anal-
ysis only for the first term and move the origin to z = -d with the
implicit understanding that z must be replaced by z+d anu the image
solution incorporated in the final results. In brief, we consider a
(dipole or guadrupole) source at the origin of an unbounded fluid in
which N is constant, J

6(zy0) = -~ te-rl2-Cl, | (s.5)
- 6,(2) = ge_kllz!sgnz (5.6)
Substituting (6.5) into (4.9) and invoking (4.6b), we ohtasn
040%:¥y2) = _—(mfanz)fyw(aﬁezS‘gckz-ai’)&eix("’-”dﬁs, 6.7)
where B s
X = ax v 8y + i\?_},.; £5.2a;
= ox + BY + u’l(kz-aa}%(a2+g?}¥lz| (5.8b)

Similar results mav be obtained for Vg aq and #q by substituting (6.6)
into (4.8), (5.9) arnd (5.8), respectively. We recall that x now is
measured in a reference frame moving with the source (x replaces X +
Ut in the development cf Secs. II-IV abowve) and that ®4 is an asympto-
tic solution that is strictly valid only for kx — = (although experi-
ence suggests that the asymptotic approximation is likely to be quali-
tatively valid for only moderately large values of kx, say kx > 1).

We obtain statiorary-phase approximations to Dar tﬁ,.aq and §
in the appendix to this analysis. Introducing the spherical polar

~ coordinates R, @ and ¢ according to

-k, | 2-d}
*The image term in (€.4) also may be expressed as +ke 1 sgn(z~d),
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Rcos8, r = (y2+22}% = Rsin8, y = rcosyp,

2=.sinp (0 <6 <m 0<g <2n) (6.9)

and letting kR = = with § and @ fixed, we find that y(e,B8) has two (no)
points of stationary phase if § < (>) %7, reflecting the tact that
internal gravity waves (for which the group velocity exceeds the phase
velocity) appear only downstream of their source in a steady flow,
Substituting the resulting approximations into (2.4b), we obtain the

. velocity fields

Yy ~ -(k?Du/2nR) 8cotdsing(ccsp+sin?dsine) Fsin(kRsing)

(kR = =, 0 €8 < Ly), (6.10)

ol e

and v ~ (k’Q"0/2rR) 5esc’s(cos®ersinesin®e) Zeos(kRsing)

(kR ==, 0 <2 <¥n), = (6.12)

where
8 = {-sind, cosdcoso, cosPfsing} (6.12)

is tne unit vector in the direcrion or increasing ©; both ¥y ana v
dre asymptotically transverse to a spherical surface with center at
R =0 (a well kncwn property of internal gravity waves),

The maximum velocities given by the approximations (6.10) and _
(6.12) are achieved in the neighbourhood of § = 0; however, the approx-
imations arc not uniformly valid as § — 0, partially in consequence of
the restriction kr >> 1 {implicit in the Staicnary-phase approximation)
and partially in consequence of the slender-body approximaticn, which
does not give an adequate description of the interference amcng the
shorter waves (which are especially important in the neighboushood of
% = §) that crlginate at various points of 3 scurce of finite cross
section. Assieming r << x in {(6.10) and (5.11), but imposing the re-
striction kr >> 1 (so that 1/kR << § << 1), we obtain
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and

¥y ~ -20u/2m) iz %e

¥, ~ (&’ '0/2mx3y|*r~Tx costkxz/r) (kx >> ke >> 1), (6.14)

where
r={o, y, 2}. . (6.15)

The corresponding approximations to the lateral strains, as de-
fined by (4.10) and (5.10), are (we omit the details but emphasize
that the 1esults calculated from ¢4 and mq have been doubled to incor-
porate the effects of the respective image solutions at the free sur-
face) :

e {kde/n)x|y]3r sin{kxd/r) (kx >> kr >> 1) (6.1¢)

1, ~ -(k’Q"/mx|y] *r %cos(kxa/r) (kx >> ke >> 1), (6.17)

whersin r = €92 4« 4% The mavims of Mg end M with rasoect to |yl

are given by

T

a.
i

and

1

o = ~0-085(Q°/7d" ) (kx) cos(2kx/3) at y = /B4 << x. (6.19)

The loci of constant phase for B and n are hyperholae, ecrresponding
to the intersecticns of the ccnical, statlonary—phase surfaces,

kReing = (o, 3_), with the free surface; the loei corresponding to
the approxlmatlcns of (6.16) and (6.17) are

/)% = (y7a)? = 2. (5.20)
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sin(kxz/r) (kx >> kr >> 1), (6.13)

(kD/Bra?) (kx)sin(ke/yZ) at y = d << x _ (6.18).
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It does not appear possible to obtain a simple, asymptotic approx-
imation (for kx > i) to (6.7) that is uniformly valid with respect to
kr; however, we can obtain an approximation that is wvalid at y =0
{although still suffering from the aforementicned deficiency of the
slend~r-body approximation) by first evaluating the Fourier integral
over ® [Erdelyi et al, Ref, B, Sec 1.5(27)], whence

8 = -(Du,hswz}f A ei“xo[[aztyzﬂz) - k222152050, (6.21)

where the resl part of the radical is non-negative, and Ko is a rodi-

fied Bessel function of the second kind. Differentiating (6.21) twice
with respect to y, integrating with respect to X, setting y = 0 and

z = d (in the reference frame with origin at the source), and doutling
the result to incorporate the effect of the image solution, we obtain

- +

Ty(x,0) = (D/?n‘?d)f ]«]xlwtaz-k?)*}ei"“da. (6.22)
> -t

The dominant contribution to the integral in (6.22) comes from the

neighbourhced of @ = k, which yields

” 5 0 o e B
Hd ~ -(Dya )iérjn x}fSAu\Aa-tﬁ; (s 22 2y v =GN (e 23)

Similarly, we obtain

T, ~ (6Q°/6%) (2kx/m°) Isin(kx-km) (kx >> 1, y = 0). (6.24)
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VII. THERMOCLINE MODEL

We consider now the discrote spectrum of internal waves associ-
ated with a thermocline model, for which (by definition)

G = N%(z) < N%(-h) = N§ (7.1)

0
‘I.Nztz)dz Nﬁh + 3§2 =g, (7.2)
-D
where -h is the vertical coordinate of the thermocline, that is the
plane in which N(z) achieves its maximum value, Nh; Ap is the total
increase in density acress the thermocline (Ap << g by hypothesis);
and g’ is a reduced gravitational acceleration. Setting

o= im : {7-3}

in (3.5) and (3.7), we obtain

(3 + e)W2(2) - Plo(z,0) = 82-0)  (7.0)

Invoking the assumptions, (7.1) and (7.2) above, that Nz(z) >0
and that the integral of N°(z) is bounded (a nontrivial restriction if
D = =), we infer freom Sturm-Liogville theory that there exists a dis-
crete set of eigenvalues, say K., and eigenfunctions, say fn(z}, that
satisfy

"It would De more conventional to regard the wave speed, Gy X wiK .,
as the eigenvalue for the Sturm-Liocuville Erotlem, bttt we find

it more convenient for the subsequent development to introduce En
as the eigenvalue and to regard both w and % as prescribed.

49

3
:
:
i
i
‘i:.

s

W

WO SN PRS0 00y G E e 00 0050 PP o gt

e TR "_iﬂfhﬂ i I.i"‘%‘b'ﬁ‘.?.“_.

1940

e T T

R Y



] WA g P ‘ T M b e T T B i o

O e 2 R WD | 0 et o T el o o T N S e R A A SRS R e e S0 G

(37 + o6 /@32 - k2t (2) = o, 7.5

£,00) = £ (-D) = 0, (7.6)

and 0 . e
; f(N/m)zfmfndz = 6!:1:1 > £2.7) _

where b n is the Kronecker delta. Expanding G in the fn in the usual
way, we obtain

6z,0) = X (P, Ol 23t (0) (7.8)
Substituting (7.8) into (4.5), we obtain
2 .2.,-1., Fagits
G,(2) = -;ch -E T (2) (v = V),  (7.9)

where f’(-d) = (@f/d0),_

Referring to Secs. IV and V above, we seck the far field (kx >> 1)
of a moving source. Substituting (7.9) into (4.8)-(4.10) and (5.8)-
(5.10), invoking the Fauner integral :

3;1(32 + a9t = walemalyl ey, (7.10)

i

and setting o = Ur, we obtain
£ ‘ : -1 igx-y iy]
{e.,4,} = —(D/e=) fv (3 ni‘ kg (-d)
d? a ?1:_: n n

{ (iartl/'f;‘:)fl;(z)il- farl 'lvnc-' Caf-vdlvl 1o £ (2)]da

(7.11)
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(g1l = (*Ca' /4T [ Pyt ™ mlyle o)
{-ufl(2), (K/)f (2))da (Jy] > 0), (7.12)
Mg = -(n,an)l; _l rff;l(-wf;w)ei“(yne“‘n]Y|-]a|e'!°’? yea,
' (7.13)
and n, = {kz(-d)Q'(xo)/-ﬂﬂ]Zn [ Gvpsadre e et Yl o,

1 (7.14)

where :

Yo = @ - kD% @y 20, = ,35)

and f;(o) = df /dz at z = 0.
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VIII. THIN THERMOCLINE APPROXIMATION

We carry the development of the preceding section further for a
thin thermecline, for which Hz(z) differs significantly from zero only
in a small neighbourhood of z = -h, where it exhibits a single, sharp
‘peak. We also neglect bottom effects by setting D = =, This model is
perhaps more realistic than, but in any event complements, that of Sec.
VL.

The dispersion relation for the dominant mode of a thin therme-
cline may be expressed in terms of the thermocline parameters Nh and
b, as defined by (7.1) and (7.2), and the depth of the themmocline cn
the basis of the assumptions

N,b/U = kb << 1 and b/h << 1. ;a.la,b)

Setting N° = 0 for |z+h| >> b and invoking the boundary conditions (7.6)

aig the regulyement that £{=} be rontipuons acTass ‘2= ~h asi b= 0; we

choose the solutions above and below the thermocline in the form

£(z) = fh{“‘::ﬁ’(‘:l:hgm’cz} (z 2 -n), (8.2)

where fh = f(-h). Tntpgratlng (7.5) across the thermocline and remark-
ing that both £°-« f and N2 wvanish except in the immediate neighbour-

hood of z = -h, where £" is discontinuous, f = fh' and the zntegral of
2 §s given by (7 2), we obtain

-h+e
0 =f {f’-<2f+(xln/w)2f}dz 2R :
=h-¢
~h+€ )
+ {f-/w)th __/;H Wldz = -f{cothth + 1)f, + g_'(xl/m)th.

(8.3)
52
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" Solving (8.3) for w®, we obtain the dispersidh velation [Ref. 9: i

(S:3. DI e
_2%hy o W

wi = @‘K{l-e
< gmk2(1Fh+ ...) (KRR =0)

~ Xg'K (Kn - ).

- Similarly

loyl = lel/u = khtgwbu-e'_’*”“‘n’é _ ‘ x _(a_.sai
= kh(_hhj%ul L geh+ he) | (h-0) : __._(s._sl_:)
~ ¥y (@K)F (kn ~ =) - _  ia_.sé‘)
ard : o | iy Al e
ool o Sy goiiteme
' el ) 6.ba)

L @mEQ - ki L) (h=0) (8.6D)

~ ¥(g'/20)% (¥h — -)-._ .;.;a.éc)-

~ We note that (8.6b) and (8.bc) intersect at kh = 5'égd servé_a§ rnugh
approximations (with maximum errors of 20 percent) for ¥h < % and

*The preceding derivation is an abbreviated form of a technique used
by Lighthill, (Ref. 10) and Drazin & Howard, (Ref, 11)., This tech-
nique alse may be applied to the higher modes, but the results are
rather unwieldy. Moreover, the contribution of the domirant mode
to the free-surface disturbance will dominate the contributions of
the higher modes if (8.12) is satisfied (see end of Sec. IX below).
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o S %, respectively, in the subsequent, stationary-phase app.:;nxima-

tions. Substituting (8.2) into (7.7), we obtain

£ = W(e . _ 8.7

_ We emphasize that (8.4)-(8.7) hold only for the dominant mode* (n = 1).

 We use the approximations of (8.2) and (8.5) to obtain asymptotic
'appmximatiohs to th§ lateral, free-surface .strains, Tld and 1 _, on the
basis of these hypotheses: (a) the contributions of the higher modes
{(n = 2) are negligible compared with that of the dominant mode (we

omit the subscript 1 with this understanding) and (b) [o| <<k, for
" which a sufficient condition is U >> (g‘h)?. The latter hypothesis

permits the approximation
v # ik (0 <@ <<K) : . (8.8)

in place of (7.15) and the neglect of |ale” eyl compared with Ye'ﬂyi
in (7.13). Invoking these approximations, substituting (8.2) and
(2.7} Snts (7,22 eactbina m - N and chonsing K, rather than o. as
the variable of integraticn (thereby regarding @ as the elgea_*iv'aiue
for prescribed K in the Sturm-Liouville problem), we obtzin

E -]

S _(n/_éﬁjafix‘?(du/dx )nrr:}e"‘“f_ifﬂ'fcf‘lyl_?dx,__{._' (6.9)
f S Ay e _ T R

-26hy-1 ). g o S
- (d2n) AN (0.20)

and . H=h+ |¢-h]. 4 (8.12)

*The oscillations of fn(z) across the thermocline do not permit
the approximation i(z) # fh for n > 1 in the integrands of (7.7)
and (8.3) : S

g

.- ‘ - - A = - . s -.’.
o260y o : :
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_from 1/h to 2/h as d increases fma 0toh and then remains ac 2/6 by
for a> ‘h. We may refine these estimates, at least: for d < 4h,

- which into (8..1.2) on ‘l:he as..mpt:ion that X :I.s real ([y] >> H} yielda

We ohtain the coms;.ondim appmximation to Tl by mplacing Dlz j

K2 (0)q (xo)'f4/ia in (8.9). The discontinuity atd=h comspmds
to the discontinuity in £°(z) at z = -h Jnd is an Mnsic chamcte:- 4
istic of the thin-thermocline approximation. : -2

Carx-ymg out a stationax-y-phase appmxinntim to (3 9),
obtain S o

B -mzm"&{s"’cau/ax)1u"’u/drzl"*‘ncx)e"‘““““"‘m* 7m), (5.12)

where K is dete‘m..ned hy

AT R e

ca;dx . cg/u = }y],x (H << }y[ < (gh'}‘éu‘ %)s ta 13)

There 19T point of stationary phase, and 11 is O(x'l) rathet' t:han i
0(x" 1“) as x = =, if iy] > (gh )g-x/ll. A saddlp-point, rather than a

stat‘lanary-phuse % apprcumation must ke used if I yl/H iz not 1az'ge,

K then must be deterr.ined by mplar_‘ing h,fl by Iyi - xH in (u..l.:} &nu
is complex. -

o

The maximum valus of ["1 } cnmsponds rougnly tu tne maximum: cr e 55
K exp( KE), that is KH % 2, uhich yields a value of " tnat :increases '

by utilizing the asymptotit. approximation (e. Se), the substittrtionlof

!!ldl ~ ntmx)"“(gg )""lrml -H

Ve 240d Fhats the mixinus value GF (8.14) posvs & Khm 1.0 o d L
kh = 2.1 for d = h-, and h = 2.25 for d > h, so that <H = 2 provides
an adeqt-al'e basis for an estimate, '1a:nely (we take D 1)

lndl'“"" =i *(ux) ]“H Yalds ’“‘} et earunens ¢

at : | s e _.
lyl/x + (o ’H)*fw (a d 41.) e TR
55 hi ' : :
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If d > 4h, we must use (B.6b) in place of (8.6¢), the principal effect
of which is to replace u9/4 by a2 in (8.15) and (8.16a) by

lyl/x # (g'h)!"ﬂ'lil—ttzh/d)] (d > 4h). (8.16b)
The counterparts of (8.12) and (B8.14) for ﬂq are
n, ~ kz(;d)q'(xon{zm)"éﬂ{n“a“’{duxdxJldzu/d:2["i
D)o~ Bri(ax=X|yl+im)y  ean
and |M_| ~ [N(-8)/8 170" (xy) (W/m0 B2 (879" )5 *oce)e™ ., (8.20)

The maximum value of Iﬂq{ occurs at ¥H # 11/4, where the deviation
of D(K) from unity is small, so that

2, kX 121174 -k
1Mol = 2-00NC-00/8 170 (e dg “ R T /4% (s.19)
' | BES T Ry g m'_fu\:ﬂ.rn £a o ERY 0 9n-
= bl + CLalg i {2 - £oen) o, 502)
..l ! Iiu'l
or Ivi/x # (@m)A*{1-2.75(h/d)] (d > 5.5h). (8.20b)

We also note that

Rl-fedfeds.  ew

We use this last result to compare the lateral surface strsins
produced by the dipole effect of a small, prolate ellipsoid of radius
a and length % and its wake on the hyporhesis that the wake is (or
has the same potential energy as a wake that is) fully mixed and of
radius a; then D # 2na2L/3 and Q' = na4/4. Substituting these results
into' (B.21), we obtain

fowej  Beand R
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Mol 3 a2 [\r(-d)’]u o :
SEECR L L (8.22a)
I'nﬂl T SO e |

2 2
- & — (8.22b)
(g'H)

The factors azlbb might lie betwsen 1[J"2 and 10'l for a typical sub-

: marine, U/c_ might ie between 10 and 102, and [N(-d)/N 1% is less
than unity and might be as small as 10'2 if the submarine is well out-
side of the thermocline. It follows that, within the limitations of
the hypotheses implicit in our model, the dipole effect is likely to
deminate the wake effect. Both effects achieve their maxima if the
submarine is in the thermocline (d # h % H) and fall off rapidly with
increasing d/h.
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IX. WKB APPROXIMATION

The WKXB approxamation to the solution of the Sturm-Licuville prob-
lem posed by (7.5) and (7.6) may be expected to yield qualitatively
accurate results for all but the dominant mode (n = 1 below), although
the implicit assumption that N2 (z) is a slawly varying function ren-
 ders it quantitatively accurate only for those modes for which Knb
>> 1. It is generally inadequate for even a gualitative description
of the dominant mode of a thin thermocline, for which Rlb ~< 1 and
N2(z) varies rapidly near z = -h. It is consistent with the WKB
approximation to neglect the effects of both upper ard lower bounda-
ries (the implicit restrictions are X h >> 1 and X ID-hI >> 1, re-
spectively; the violation of the forner reﬁt“iction is likely to be
q“uﬁﬁg_-_\__' ::gnif~~~wr anly far the dominant mode, while the latter
restriction is almost always satisfiead in a reai vceail). Deacliy
these remarks in mind, we rewrite the Sturm-Liouville problem of (7.5)-
(7.7) in the form

2 o y i
{Bz + angz}]fn(z) = 0, _ (9.1)
fn(iw) = 0, (5.2)
ana f wfmfndz = bmr", (a.3)
_ =22
whare wiz) =w “N(z) - 1 (9.4)

is the weighting function, and En is the eigenvalue. The results
presented in (7.8) through (7.15) remain valid for this revised
formulation.

Fami s Gees By Gend By Wong 0 BERE R

[— ] | S bmy Biisd -—

-



We proceed on the assumptions that Nziz} satisfies (7.1) and has
only a single peak (N = Nh at z = -h) and that Ewl < Nh fwayes for
which |w] > N, are not propagated); then w(z) has only two zeros, say
zZy and ?u’ such that

w(z,) = w(z)) = 0 (z, < -h<z) (9.5a)

and w(z) >0 EZL <z < zu}. (B.Sb).
: % 8 >
We alsc define arg w? = 0 for w > 0 and infer arg w*® = Yn forw <0

from the requirement Ro > 0 (or, equivalently, Jo < 0) and the facts
that N'(z,) > 0 and N'(z,) < 0. We then may pose the WKE phase inte-

gral in the forms

1

P(z)) + iQ () (z > z)

Z
P{z) = f‘ w%dz >0 (zL &g zu) ) (9.6)
e
= - iQ,(z) (z < z)
where ZL
5.
Q,(2) =f Cane) S (9.7a)
4
and z
Q,(z) = (-w)idz. :  (9.7b)
&
u

Invoking the fact that w — -1 outside of the thermocline, we obtain

Q, (z), Q,(2) ~ {z+hl  (lz+h] >> ). (9.8)

The WKB solution of (9.1) and (9.2) is given by the following (we
omit the details but note that the problem is analogous to that of the

harmonic oscillator in quantum mechanics)
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(_)nulexp{-tn%(z}} (z > zu)
£, (z) = Cn]w(z)i'% 2cos{x P(z)-km} (z, <z <z2) (9.9)
: exp{-k Q, (2)] (z < z,)

except in the neighhourhood§ of z =2, and z = 2, where Airy-integral
representations must be invoked. The corresponding approximations to
. the eigenvalues are given by 3

q-1

" .
S U P B (9.10)
n zL
The normalization of (9.3) implies
c, = Cre(2n-2)"177% % . (9.11)

We calculate Kn on the basis of the psrabolic approximation
2 Sl Z4+Ny £ :
N(z) # K {1-(5)) (g, <z <z2) . (9.12)

If we assume that (9.12) is valid for all |z-h| < s and that N = 0
in |z+h] >'s, (7.2) implies b = 4s/3. If we assume that N2 = Naexp

[-(z+h)2152], for all z and is approximated by (9.12) in Z, <z =< Z
(7.2) implies b = ﬂgﬁ.] Substituting €9.12) intoc (9.10), we obtain*

K

= (2n-1)s'luhm(N:-m2)'J (@ <N)

where, here and throughout this section, k = k(-h).

*This result is exact if N(z) is described exactly by (9.12),
for wnich (9.1) is Hermite's equation, and the f_(z) are -
Hermite functions. 3 .
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(9.13a)

(en-1)s~ e (k?-a®)r (2 <k) , (9.13b)
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We proceed on the hypothesis that

le] < |x |, (9.14)
by virtue of which we may approximate (7.15) by
P e LI . (9.15)

where argyn_is determined by the requirements R-,-n 2 0 and Jdo < 0, and
neglect the term in.exp(-lay}) in (7.11) and (7.13). We also use the
approximations of (2.8) outside of the thermocline. Invoking these
approximaticns, substituting (%.9) into (7.13), and restricting the
range of integration to that of the propagated waves (|a| < k ; waves
for which }a| > k are not propagated and are negligible for kx >> 1)

® k
. 2 iax-(2n-1)ik (|y]-1H)
N, ~-(D/2n)Y AR ik."e 1 der ?
d - rgl n ./0. 4 :
(h, ld-h| > ) , . (3.16)

- R el pot 5 %
where A I\r = (Zn-1) mt2n-1}) qumn-uuﬁ » 5.37)
i .

lcl is giver by (9.13b), and H is given by (8.11). Introducing the
change of variable ; ' :

@ = k sinC : (9.18)
gnd the parameter
b= (2n-1)0oxs) Myl-iH) (Y < argw < 0) , (9.19)
we rewrite (9.16) in t'ﬁe form

= ) 2 2
A —(kDf?ﬂsz) A Rf isinzcSec.?-celkxs:m\:(l-unsec C)d:‘ .(9'20)
n=1 1 il ! :
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The integrand of (9.20) has a saddle poin% at the point deter-
mined parametrically by

e b 2 i 2.2 2,-1 \
sinf{ = a/k = M (1-vn) (1+un) » (9.21a,b)
where ¥, is a complex numben, The contribution of this point domirates
: the asymptotic approximation (as kx — =) to the integral (after an
b appropriate deformation of the path of integration) if ]unl <1 and

[1-u | is not small. Carrying out the saddle-point approximation, we
obtain

Ny ~ (0/85) 35 A (hxs i)
n=

3 3
: = 7 D 2 ok e B D e g,
A, = B(mkx) ?Ana(v; (1-v2)  2@ev2y3(3e?) %A K- 31/4))  (9.22a,b)
where X = Zkxvi(av) (5.23)

Similariy, stavting diuim (7.i+); «e oblaia
[--]
2rmt 4
Tig ~ [NCG-a)/R 170Q () /s Jnizlnqnckx, b s
5 : - 7 I

Agn = o) 2n-1) A RIvEQ-D) Zaed) Eesn?) el Kn 37743
; {9.24a,Db)

The largest temms in the modal summations of (S.22) and (9.24)

are those, if any, for which lunl is small and, from (9.21Db),

v, =1- (%pn}% + D(iun]) 2 (9.25)

Substituting (9.25) into (%.23) and retaining only the dominant terms
in each of the real and imzginary parts, we obtain

X % kx - 1(2n-1) %00y S0 AR y]1¥ 2w - (9.26)

€2
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Substituting (9.25) into (9.21) and (9.13b), we obtzin
lare,l = o1y ls|a |, (9.27).
so that the approximation (S.25) is consistent with the restriction

(9.14). : 2 : o
We use the approximations (9.25) and (9.26) to oﬁtain the esti-

mates
3 o
A+ 2 Enec2n-2010 " 2n- 1 o ¥s? (y 22y sé xn; (9.28)

7 ?

12 5 5
and [al # 2 7 o Hme(2ne1) 201 o y%n?) Be¥n .
(9.29)
Assuming ]y] >> H, we find that %Adnl has its maximum at
bl /1 = f070N9n 3 )R/ Ry >> 1 (9.30)

(e

and similarly for ;ﬁq 1, with 2/9 replaced by 2/49. These maxima are
fairly sharp (in |y|/H) and therefore can be achieved by only a single
mode at any civen point. The corresponding maxima in |'ﬂdi ard [TI |s
neglecting all modes except that for which (9.30) and its countetpart
for Iﬁd | are satisfied, are - L

PO S SGPPOPRI 4 L0 TRl T or 6 sy €0 0500 2430 8% 40 4ot 0 BPr g @ S50 =044 §4

: _ 3 spithser
0.025(2n-1)'¥(kD/5¥ﬁ§)(kx)'g (9.31)

‘ndlﬁax

1]

and lnq‘max

Ly
0.25(2n-1)" {K(-0)/%,120Q " (xg)/s W21 (k)™ (9.32)

Comparing these maxima with those of (8.15) and (B.19) for b = 4s/3
and n = 2 (typically the most important of the higher modes), we

B3
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conclude that Lhe contributions of the higher modes, relative to those
of the dominant mode, to |7,| and |7 | are not likely to exceed
0.05(#/s)>/2 and 0.12(s/H)3/%, respegt:ively. The former ratio could
be larger than unity, but only for H/s such that all contributions to
I"]d[ would be very small; the latter ratio is certainly small--typi-
cally between 107 and 1072,
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RPPENDIX TO ANALYSIS B
STATIONARY-PHASE APPROXIMATIONS

We require stationary-phase approximations to integrals of the
form

X = (zﬁ)‘if_[f(n,s)eix“"“duds : (A1)
- where K= qax + 8y + n"l(kz-uz)'i{uz-raz)%z s (A2)

z. >0 andR=(.<2+y2+ 22)!5—00.

Considering first the 8-integration, we find that X has a point

of stationary phase at

o PltAs —ajajyi’e -a?e?ys (A3}
at which pecint

X(a,8,(8)) = ax + (*z%-a%”)¥sgna , (a4
and : | 3

Xgs = (02)"2(k2-a?) k%2 a%r?) 2sgna @)

Carrying out the stationary-phase approximation to the f-integral,
we cbtain ;

: T e
I ~ (2m) 2[ (fX;§)5=Bs{u)exp{iX{a,ﬂs(u]) + kinsgna}da | (R6)

N AP S
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The integral in (A6) has two points of statiocnary phase at

I
I
2
n

+ kxz/rR = + kcos@sine (A7)

and B ="8

n

-asyx/rz =7 kcoszecscﬁ singcosy (AB) :

if x > 0 and no points of staticnary phase if x < 0; R, 8 and P are
polar coordinates, uafined by (6.9) above. We also obtain

* kzR/r = + kRsinp - (R9)

X(ds,ﬂs} = 4
X., = F R/krz , ' (R10) :
and Xgy = = (2'RA2)(y2R%422c2) 7% (A11) :

where the upper and lower signs correspond to o 2 0. Assuming that -
f(-&, B) is the complex conjugate oi f(z, B), We find that the con- i
Tributions of the two points cu e stacitilaly-Dhase appiosisation to
I are complex conjugates, with the end result

T (kxz/nr3a?)(9232+z r2)¥9{f(a BT} (x> 0) (A12a) :
= (k}arR)cotGsiancos%ﬁsin?esin%)%l{f(ws, Bs)eimim} x> 0y,
(A12b)

- Comparing (6.7) and the corresponding representations of Yo ¢

and *q to (Al), we obtain

n

#logerg) = WI-U62e") ¥a?)¥ , sgna) (a13)
- dand

lﬁd.kQQ'u.{U(u?-rsz)%(kz-uz)% ) -(a2+52}sgnz]. (A14)

{
f\oq.ﬁq}

€6
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Suhstituting (A13) and (Al4) into (Rl?b}, we obtain
[ad’*d} ~ (¥D/2nR){-U, cotBsing] (cosZp + sinzesinzzp)l’

*cos(kRsing) (kR-=w», 0 <8 < Lm) : (A1s)

and {osq.vq} ~ {kqu/an)[;chcqn, cot8)sechesc2s
2 el T X
*{cos“p+sin“Bsin 9) sin(kRsing) (kR — @, 0<8 < %)
(A156)

Su_bstituting (A1l5) and (A1s) into (2.4b}, we obtain (6.10) and (6.31),
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We wish to study the effects on rather small surfece waves, and
specifically on their height and slope, of the existence of internal
waves in the region of ocean through which the surface waves are mov-
ing. Surface waves damp exponentially in depth in a distance compara-
ble to their wavelength, so for small surface waves, we can assume that
the dimensions of the internal wave are very larye compared to those
of the surface waves, and therefore the internal wave can be well rep-
resented by a horizontal depth independent current. We describe this
with a velocity field U(x,y,t), which is a function only of time, of
the horizontal coordinates x, y, and with no vertical component. Fur-
thermore, wz may expect the times and horizontal distances over which
U varies to be much greater than those over which the surface waves of
intarest vary.

We shall ignore viscous and other dissipative effects for the sur-
face waVes, thot 2z, wo chall sscvms +hat dampine 415 unimportant over
horizontal distances comparable to the region O2cupled by The internal
wave. Typically, we shall be interested in dimensions of surface waves
which dissipate in distances considerably longer than that. On the
other hand, since the size of the effects we are interested in will be
characterized bv the parameter U/cg, where Eg is the group velocity of
the surface wave, we are also most interested in slow (i.e., short
wavelength) gravity waves. Yet these ars alsoc the waves that dissipate
most quickly. We must therefore strike a balance between the two re-

quiremecnts.

Finally, we shall assume incompressible irrotational flow in the
region of ocean occupied by the surface waves. .-rotational flow is
describad by a veloecity potential ¢ which satisfies

g =0 (1)

w».gmm#mwwﬂmﬁ Ll Ad T L
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There are three boundary conditions on the solution to the equation:

; (;L) At the surface, the vertical velocity of the fluid 3¢/3z is the

same &s the time derivative of the height of the surface h(x,y,t), so
that

F=F+ (.= 2

and Bernoulli's equation relates h to the derivatives cf ¢:

24y w2 =gn. | &)

(2) The second boundary condition is the assumption that at large depths
U approaches the imposed velocity U

B(X,¥585t) e U(X,¥,t)
Z - -

or if & is the velocity potential for i so that

BUKyy36yL) smmmmsmmems 1030 v 0)
z = -=
(3) The final boundary condition is the initial condition that for
times far in the past the imposed flow vanishes and the wave approaches
& freely propagating wave %,

B(X,y32:t)—————e QG(X:Y»?-":)
Tt = oo
(4)

X ¥t) e—— o
£t - =

The effect of the imposed flow on the propagation of surface waves
is expected to be small since the velocity of the surface current is,
in general, much smaller than that of the surface wave in open sea
conditions. The hydredynamic equations adumbrated above may therefore

72

.



L TV BRI I o e A PR

be expanded in powers of U and only the linear term retained. We
begin by writing

IS RS (5)

where ¢0 is the velocity potential the initial wave would have had in
the absence of the surface current and ¢1 is the correction due to its
presence.

The equations governing $, are chtained by substituting Eg. (5)
in Eqgs. (1) through (4) and retaining only temms linear in gl and .
Noting that ¢ and ¢ separately satisfy Egs. (1) through (4), we have

S .
v wl =0 (6)
with the boundary conditions
81 (%¥52,%) e 0 (7
t =+ == ;
¢l(x3)')z't)‘—'—'_.' 0 (B)
Z = -
and
%0, b9,
e st 2 = [(v& + v9,) .« v ] +% (9, + V&) - w(vp )2
t

+ V9« Vvp_ . (vE 4+ 99,)] =

As a consequence of the small smplitude assumption, temms which are
quadratic in ¢, are negligible in comparison with those linear in ¢
Further, since ¢2 is a small correction to a , terms like 2194 may be
neglected in ccmpar1son with ¢l

The boundary condition at the surface then becomes
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—?t-z-{.gT‘E:—ZE—tE?Q-W0]=—2-E[U'v¢°]. . (2)

The problem is now to solve Eq. (6) with the boundary conditions (7)
to {(9). The general solution of Laplace's equation (Eq. (6)) which
satisfies the boundary condition (8) may be written

61 (%,25t) fd k dw _ i(k-x - et) kz 2y (m)
(sz
Since Qc,_the unperturbed flow, also satisfies Egs. (6) and (8), it
has a similar Fourier decomposition with Fourier transform "'Q(E'“’)‘
Here and in the following, x will mean a two-dimensional vector in
the xy plane. Equaticn (9) then becomes
31(?..‘.:“’3 = ....._2}.."5_..2 F('}&,m]
gk - w

wvhere F(k,w) is the Fourier transformm of (U- vﬁo)z=0 given in terms

of = 2mA +he Conrd awn +rancsfarm af 11 hu
F(k,0) = 1fJ—)5 Uk-gs ©-v)* g a_(g,v) - (10)
; 2n

This solves the problem of determining the perturbation 3, to a
small amplitude surface wave %, caused by an arbitrary surface cur-
rent U. The quantity of chlef interest, however, is not the veiocity
potential ¢ but rather the height h. If we write &h for the change
in height caused by the surface current, then we have from Eq. (3)

' ¢
UEESS! 1
o= -3 [-:;E *2 “’%] :
Here we have retained only terms linear in U, have neglected terms in
do' @ el, and have used the fact that there is no vertical displace-
ment from the velocity potential # in accordance with assunptions (1)
through (4). For 5¢,/3t we have
74
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=.[d2k = 5| E(k,w) oKX - o8)
(2m) gk - w :

£ B

_ [ % dw 2gk i(kex - at)

e '2‘*——9—7 Flk,w) e ;

f(z“) gk-m h i,

=.-2u-v¢ +2f"2kdw ng(ku-‘) i(}é-;‘.-mt)_
S (2ﬂ) gk - w?

Thus for &h we have

L - v 2 ' o
sh(x,t) = - o +fd k dw 2k F(k,®) ei('lg'zg wt)

(211}3 tu2 - gk

- or in terms of the Fourier transforms of mo and U fef, Eq. (10))

u S ? 2 4 ] i
Shix,t) = = z fdzk dw 22k fd q dv l.(le g M) < g

(2rr) w” - gk (211}
i(kex - wt)

a cs ) T b . ' -_(w
In general, the nonlinear effects on ‘the 1mperturhed wave will
be of the order of magmtude

(%)?/58 ~ nax

typically a number like 1/50. These effects are therefore large com-
pared with the effect of the surface current which might optimisti-
cally be of the order of several percent. For a calculation of the
total wave, these nonlinesr effects cannot be neglected., If, however,
one is, as here, mainly interested in thé change in the wave structure

due to the surface current as calculated from Eq. (11), then the change
arising from the linear part of the wave will be larger by the factor
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max/z"m than that coming from the nonlinear correction. To calcu-
late &k from Eq. (11), we can therefors replace a, with the value
appropriate for a plane wave with wave vector. 150, frequency ®y = (g ko)’i,
and amplitude A:

30w = (2m° & 8Pk ) s(0-w ) .
One finds, then, that

u . v
- o v _ 2 ik ex-at
6h(x,t) = f > UCk-k , w-@ ) » k e
> g (2")_3 s = ok ~~p? o =g -

(12)
Writing
+m
1 i(w-w )’ . '
U(h— o2 W 3) = e js] H(h"koj c ) dt 2
the w integration can be performed by evaluating
+ﬂ
Suerot=t") :
T——-’E—-——H I{t-£ry -, (13)

In order that @l vanish for large negative times the poles in
the denominator of the integrand in Eq. (13) must e displaced slightly
into the lower-half-complex-w-plane. One then has

0 s i Fl LS t'
I(t-t') = i [e-i;,»rg (e-t’) _ i/kg (t-t N .
2/kg . b t!

-Making these substitutions in Eq. (12) and displacing the k integra-
tion by an amount }50, one has

: t
koe B(xst) ik -x-w t
§h(x,t) = li == puE f J(x,t,t ‘) at’l A e ™® e

g g
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where

2 ; ’ ; :
(gt 1) *f =g Valkei| H(EE ) ko ¢ Utk IRE
m

[ -iNglkek | (e-t ") i\EIk+ko} (t-t')]
e ——t -

Now, the wavelength of the internal wave is much longer than that of
the surface wave and U(k,t) will be sharply peaked about k=0. We may
therefore expand \fg|k+}go| about k=0,

ho
'\19_11,&"";.%0‘ =\’g Ll QPEQ reE )
[e]

1 g s
Writing £ = X go (g{ko}“£ for the group velocity of the surface wave,
we have

J{x,t,t ") +fﬁ—2 [wu - c - k] k « Ulk,t’)
(2m)

[eah < Lx - g le-t )]_ezwo(t-t-_) ei;& « [x + ggle-t9]

Since the surface ,urrent varies slowly in time as well as space
[assumption (4)], the second term will be small compared to the first.
Therefore :

ko [x - gie-th]

x
Q(X,t,t') [tl.' —i,c‘g-V]f——-ﬁ‘;Lﬂo L(bt‘)e

lo) « L5+ 91 Jg = Wlx - g (e£9, t1) .

If we denote the height of the unperturbed wave by ho(js,t), so that
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ho(?_ﬁ:t) s M

then we may write

5g t
h _ ]50 = H(x"t) ’ B > :
H;"——rcg—— +f dge’ [- & ko-gﬁc-v] ho. 2[5_%(1:_1: ), t°1.

The height of a wave can change at a given point and at a given time
not only because the amplitude of the wave changes, but also because
the phase changes. Since it is the change in amplitude which is of
chief intevest as far as the identification of the current is con-
cerned, it is important to separate these two effects.

The general wave can be written
h(x,t) = A(x,t) eix(ﬁ’t)

where A and X are real. For small 5R, 6X perturtatiens away from un-
parturhed wvalyes no and X ., we have
L&]

Sh -8R . .
Eae b i X
H; o

‘ < ulx,t) :
- . X, '
Ay - 8 /

|
RS =g 5k 0 7 ko Mgyt e

: t
and 6X=TIa () = . k_ f Ulx-c (t-t”), t) at”

--3

The first temm in the amplitude enhancement is an instantaneous effect
and very small. The second temm is a time integrated ecffect and de-
pends on the gradient of the flow.
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In addition to the change in amplitude, the change in wavelength,
frequency, and mean square slope are also of interest, The change in
the wave number 8 and the change in the frequency &w may be obtained
from the change in phase §X through the relations

8k = V(6X) , bw = - 3(sX)/3t .

The mean square slope in n? is given by the time average of (?h)z.
The time average is taken over a periocd of the surface wave, a time
which is short compared with the characteristic variation time of the
surface current. In this case the time average may be expressed in

terms of the complex waves by
m2=5‘= | 1

In terms of the charge in amplitude and phase, one can then easily

find for the change in mean square slcpe

2 k- V85X
Sm. <[z A o (18)
I L U o :

m 0
o L=

or, since
Eu =V X = 50 + &k = ko 8k =3

this can be written as

6m2 a'ie 6(kA) :
SR

Inserting expressions for 6X and 8A/A into Eq. (14), one has, finally,

2 C U(x,t) -
5 =X
— = EE—-—-——--- -3 (ﬁﬂ-?)fy-[_{ - gglt-t9), =it 1

79

e —

LT

Ml-ﬂifﬁhﬁwmr L L AR T T BTS00y g tevtifosisdtoe Ll AL 10 - Ll RS L g

TV



——y

In order to investigate the magnitude of possible enhancements
of amplitude and slope, let us assume that the surface flow U has the
form of a wave propagating with a phase velocity C in a direction
specified by a unit vector n:

Ux,t) = U(n - x -Ct)

In this case we have
: t
e _ K - BOx.t)

A ___2_(:;_'_ =%k e v}f dc’ Eo- 4n - (%-gg ti+(n - Eg-c)t’]

and a similar expression for the mean square slope change. Suppose
now we follow a crest in the internal wave which for simplicity we
assume to occur when the phase of U vanishes. Then x is velated to
t by

2=Ctn
and we have 3
« 1(0) : i
6ﬁ.__ho ~ . A x i £
LT e 5 & - BfE, - uce- g W(E-t)] at’

where U’ denotes the derivative of U with respect to its argument.

Surface waves which have these components of the group welocity
in the direction of propagation of the internal wave equal to the
internal waves's phase velocity may experience a large enhancement
from the cecond term. For these waves

=C

>

[ nd -
g
and the enhancements in slope and amplitude are
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Em & A
= -3k, -1 (k- oD T,

and

£« uo)
)g&:_g.ﬁ_z;_-g(ﬁo-ﬂ) (k, + U0 T

where T is the time that the surface and internal waves have been in-
teracting. If T is long enough this time-integrated effect will be
appreciable and will dominate the instantaneous first term.

As a particular example, let us take for U a sine wave with wave
number K, frequency Q, and the surface current in the direction of
propagation.

U=Ru sin(x-x-0¢) .

: ; it
If we denote by & the angle between K and ho’ then 6R/A and 6m2/m2
may be written :

6m2 7 Scas 8 p :":i_,. ™ ¥fln r~rag B _ NY]
e [} g .
F e——— - 3 (TKU ) cos”8 : .
~, cg (o) L T E(cg cos 8 - C) J
and ' (15)

& UD cos B o [sin T K(cg cos 8 - C)
> B T S5 - 5 (TKU)) cos®e T K(cg cos 8 - C)

The most favorable case is for waves traveling in the same direction
a5 the internal waves with Cg = C. For these waves, the dominant
effect is

2
6A _ dm"™ _
r--gmxuo Tm _-STKUO.

gl
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For waves which travel at an angle with respect to the internal wave
but have their component of cg in the internal wave direction equal
to C, there is the same erhancement decreased by a factor cos8.

Waves whose velocity component in the direction of internal wave
propagation is greater or less than C will eventually pull ahead or
lag behind the internal wave. This is indicated mathematically by the
decrease of the bracketed factor in Eq. (15) for large T if Cg * cos ]
# C.

There will thus be a strong time-integrated amplitude and slope
enhancement for the special class of waves which ride along with the
internal wave. This effect is proportional to the gradient of the
surface current and to the time of Interaction. This time, in turn,
will at best be the minimum of the characteristic times of decrease
of the internal wave and the surface wave due to dissipative effects,
If the lesser of these times is long enough, there may be an appreci-
able enhancement.
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I. INTRODUCTION

We shall be concerned with the scattering of electromagnetic
racdiation from the ocean surface, with emphasis on frequencies in the
microwave region. In crder to simplify our calculations we have cho-
sen to study a model in which the electromagnetic wave is taken to be
a scalar field. We believe that such a model brings cut all the
essential physical phenomena involved in the scattering process, ex-
Cept possibly in scattering from the sea at low angles of elevation.
When the scattering occurs near Brewster's angle, tne scattering of
vertically poiarized waves should be strongly suppressed, a phenomenon
which our scalar model cannct reproduce. In any case our approxima-
tion scieme for studying scalar waves breaks down at small angles be-
cause of the phenomena of shadowing and multiple reflection.

ihe actual extension or the tnecry presentes here to the 1urt
problem of vactor electromagnetic waves is perfectly straightforward.
The resulting formulas for polarization, etc. will be given in a fu-
ture, more detailed report. In the follewing discussion we also
ignore Doppler effects arising from the fact that the ocean surface
is constantly in motion. These effects, which are not believed to be
important in the present context, will also be trested in the later
report.
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II. SCATTERING FROM THE OCEAN SURFACE

At any instant the aip-water interface is given by the surface
'z = h(x,y), the origin being so chosen that if we average over many
instants, {hix,¥)) = 0. We assume that the illuminating radar pulse
is of such a short duration that during the time it is actually inei-
dent on the 5ea_surface, h(x,y) changes by a negligible amount. Since
radar pulses are, typically, microseconds long, this approximation
should be excellent. Our problem, then, divides into two parts: (a)
given a plane electromagnetic wave, of wave vectop k, incident on a
fixed sea surface z = h(x,y), find the wave scattered in any direction
and (b) find the average power scattered in any direction where the
average is taken over many values of hix,y) corresponding either to
many different times or many illuminated patches on the sea surface,
Since we are neyglecting instantancous motions of the sea surface, we

< EY T e ot hla Acem= Bt Tl e e T o T T R, W Loy msmmen i
Cen =&y nothing - pCsad SEpler shiftdine o2 £ho tpeguency of

| R o #e ek Bk 2,

the scattered wave.

For frequencies in the microwave region, the index of refraction
of sea water is well represented by

s 2
n=n (1 + ic/wno so)

where 1, = 80, o = 3Imhos/meter, aﬁd Eo is the dielectric constant of
vacuum, The quantity G/wng €= 107/v describes the relative impor-
tance of conduction and displacement currents in the equation of mo-
tion. At microwave frequencies, v = 10lD ¢ps, and the imaginary part
of the index of refraction is totally negligible. Therefore we may
safely think of our problem as that of computing the scattering of
elecfromagnetic waves from the interface between two purely dielectric
media with indices of refractien 1 and 80 respectively.
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Boundsry value problems of this kind can, unfortunately, be
solved exactly only if the boundary surface is quite simple: plane,
elliptic, etc. Therefore we are forced to resort to approximate
methods. In general, there are two sorts of boundary which admit
simple approximate solutions. In the first case, suppose that the
radius of curvature of the boundary surface is everywhere large com-

Ppared to the wavelength of the incident radiation. We can then apply
-_cjeomet:ﬁcal optics to compute the intensity of scattered radiation.

In the second case, suppose that the deviation, A, of the surface
from one which has a known solution is everywhere small compared to
the radar wave length A. Then, by a simple form of pertufbation the-
ory, the scattering can be computed correct to order A/\ (we will
shortly show how this is done). Therefore if the sea surface h(x,y)
can be written as h = h + hl’ where h1 is everywhere small compared
to A, and the radius of curvature of h is everywhere large compared
to A, we can combine the above two approx:mation methods to get a
decent solution. Whether or not this can be done clearly depends on

e

the detailed nature of the sza surface.

ARt any instant the sea surface, h(x), can ke written as a Fourier
; St o5 - iks 5 i
integral-h(x) = | ok a (K) <2* . W can obulgusly moke the docores

i
sition h = ho - h1 where

' hc fdka(ﬁ) eiEx
: - k<k

hl =f dk a(k) eiE'x_
k>kc

and k Iis for the moment arbitrar-y. We can then show that if k is
properly chosen the surface h has a mean radius of curvature Whlch
is large compared with the radar wavelength, while thie mean magnitude
of hl is everywhere small compared to the radar wavelength. Since the
sea surface is a rancom precess we can really talk only about the
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mean values of the coefficients a(k). A1l such information is con-
tained in the correlation function

p(x) = (h(x)n(0))
=de A(E) EiR'x
which has been determined experimentally to have the form

k
5 .
3 1 ikx
plx) =¢C J dk e
,;f K
1

The cutoff k1 corresponds to the gravity waves moving with the wind
velocity and the cutoff k2 corresponds to very short (say, lmm) cap-
illary waves. The corresponding functicns for the surfaces hD and hl
are then

Ba(R) = (h GOn (03 = ¢ flar L oIF%

k
0 ) = (GOm0 = ¢ f G Ly e5X
ke
The mean square height H° of the surface hy is then
k2
H = p (0) = e [ aend = e ac?ic?) = 2x107 %2
Xe

and the mean square radius of curvature, R?, of the surface ho is
given by
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mC(k-k3) = 2x10 N

We should like to satisfy simultanecusly the conditions H/A << : and
A/R << 1, where A\ is the radar wavelength. Accoﬂd’hg to the above
equaticns H/A = 0.007)% /1, and A/R = 0.29 1/1 s so that if we choose
1 = 6A, we have H/A = ll/R = 0.05. With such small values for the
expansion parameters, we feel safe in computing the scattering from
the surface h by geometricel optics and in computing the extra effect
of the surface h by perturbation theory. We emphasize that our
ability to make both expansion parameters small simultanecusly is a
stroke of g-cod luck depending on the detailed statistical structure
of ocean waves. It probably is not possible for other sorts of ran-
dom surface. ! '

We now have to show how this approximate calculation is carrica
out in detail. In order to demonstrate the ideas involved we study
the scattering of a plane scalar wave from a surface h(x,y) which can
be decompcsed iato two surfaces h and h:[ in the manner Jjust described.

Once we have solved this problem it is not hard to fold in the com-
: plicat:mns due to Lhe vector nature of the electrom_gnetic field.

In a medium of varying dielectric constant n(r), we assume ‘the
wave function ¥ to satisfy

v? + %2 n(x)] ¥(X) = 0, k = w/c.

This means that if n(X) has a discontinuity on a sui.face, then ¥ and
its normal derivative must be continuous across that surface. In *he
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 case at hand, n(x) takes on either of twou constant values 1, or n,

the dielectric constant of seawater, jumping from one value to the
other at the surfacs z = h(x,y). We then want to find the solution

to this equation when a unit amplitude plarne wave, fipi=s elE'x,

k = k(cos8, 0, -sin8) is incident on the sea surface from above. (See

Fige-3):
‘Corresponding to the division of the surface z = h(x,y) into a

_part,.ho(x,y), with small curvature, and a part with small amplitude,

hy(x,¥), we can write n(x) = n_(x) + n;(x). n_(x) takes on the values
n and 1 and describes the air-sea interface z = hD(x,y). nl(x) takes
on the values 0, #(n-1) and is nonzero only in a smu.ll region around
the surface z = ho(x,y) as is described in Fig. 2.

Let us suppose that the solution to the scattering problem for
the surface z = ha(x,y) is known and let it be called Yo+ Let us alse
define &% by § = ?D+6t where § is the desired solution for the surface
Z= (ho - hl) {x,¥). We can combine the two equations

sk n @1 =0
o o
(v + k*° (n(x)+n; (X)) ] (¥ +8¥) = U
to give

[vz + K2 no(i)J 5¢ = -kznl(i)ifi} X

-This equation, in turn, can be put into integral form if we introduce
the Creen's function, Go(i,i'), which is a solution of

(72 + k2 n_(3)) 6 (%,%") = 8(x-x") .
This allows us to write
84 ()= -szdx' B, (%% ") n (X $X7 .

S0
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Since ny is nonzero only in a volume which goes to zerc as hl goes to
zero, &y is of order hl' To this order, therefore, we can replace ¥,
within the integral, by iO:

100 = K2 f 6%’ G GLRN RGN

To the same order, we can actually replace the volume integral
by a surface integral over the surface z = ho(x,y). The equations
of motion satisfied by io and G0 imply that at this boundary surface,
both these functions and their normal derivatives are continuous.
Therefore the effect on the integral of their variation over the small

volume in which n, is nonzero is higher than first order in hl‘
can therefore write

640 = K2(n-1) [ 5 G (R,%1(8)IR,(x'(8)) ¥R/ (8))

where the surface integral is taken over z = ho(x,y), x'(8) is the
three-dimensicnal position vector of the element of surface, and h,

is the normal distance between the surface z = h and z = h +h &
(Lahen positive or nenative according as z = uqrnl lieo _L;;: op ko
low z = ho). Finally, it is convenient to convert this into an inte-
gral over the plane surface z = 0, taklng Dis {x,y} to be the position

vector in that surface
810 = -K2(n-2) [ 86 1y (F) G LX) ¥ (RGD)

where x(6) = (5, hy (f)) and h, is exactly the quantity earlier called
hl’ the vertical dlstance between the two surfaces z .h and z =
h0+h The geometry of the transformaticn is best explalned by Fig.
3. Therefore. if we know ?0 and GD on the surface z = ho, we can

calculate by, correct to order hl'

According to our assumption, the radius of curvature of ho is
everywhere large compared to the wavelength of the illuminating radi-
ation, so that scattering can safely be computed via geometrical optics.
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In particular, we need to know *o on the surface z = ho‘ Ceometrical
optics means that, if we neglect multiple scattering and shadowing,
the field at a point on the surface can be computed by replacing the
curved surface by its local tangent plane and imagining the given
incident wave to be scattering from it. It is easy to show that if
the incident wave is eiﬁ'x, the total field at a plane boundary be-
tween regions with dielectric constants n and 1 is

2cosa eili-i
cost + J/n-sinla

where cosa = k+f, n being the unit normal to the boundary.

We also need to know Go(i,i') with X’ on the surface. From the
equation satisfied by G, it is clear that Go(i,i') represents the
total field generated at X’ by placing a unit source at x, given the
boundary specified by no(i). If X' is near the surface, and if we ne-
glect multiple scattering and shadowing, the geometrical optics approx-
imation to G is gotten by replacing the curved surface by its local
tancent pl:?:. The sclution ‘?- Fo in tha nresence of a plane beundary
is well known. If we set x = k'R, take x on the boungary, and ist
R, it becomes

ik’ .%
e 1K’ -% 2cosa’

A
G (k'Ryx) = -
o TR
. cosa’ & .ﬁ = sinﬁa'

o’ being the angle between £’ and the local surf:ce normal.

We now can write down our expression for the field &y(¥X) when X
is far away from the surface:

Re¥(k'R) - - X ‘“‘”fda hy (B)2(e (5 ))T(a" (5))e s %5)

where

T(a) = 2cosa/(cosa +_.£-sin2ﬂ.) ¢
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We are particularly interested in the field scattered back along the :
A,
direction of the incident beam, in which case kK’ = -k, and

2 s
Rep(-kr) = X.{n=1) f @5 1 () T2(a(s)) oKX

It turns out to be convenient, for purposes of computing the
average backscattered power, to recast the expression for &f in a
slightly differenc form. First of all, we note that the reflection

coefficient is a function of cost = —ﬁ-ﬂ where :?t is the local surface

nurmal. In turn, nis a simple function of 'T_%hctl_l'). so that we can
write T = T{“ﬁ-‘;ho(ij). If we introduce the Fourier decompositicn of

: hl(i'), ﬁl(I), we then have

A 2 = = FalT ¢ -
8y (-kR) = 5?1%%})'["1 'ﬁl(z) dp‘l‘?(?i ho(ﬁ)ei£2k+l) p-2ksing hO(p)]

Since the surface ho(B) is one which satisfies the criteria of geo-
metric optics, we can evaluate the integral over p by the method of
staionary phase. This means that the only important contributions
come from those points p where

;E W ZRAT)-p =2ksauib 1-0;vla =3

or
UE ho(E) = (2k+1)/2ksing.
Therefcre we have
2
BY(-RR) = Lg.i;ml_’f at f (1) 2GR ) x

f dp expli((2k+1) -'Eu-zksine'hé)] -

The virtue of this expression is that the arguments of T no longer
depend on the specific surface, so that the averaging process is
simplified.
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: To compute the backscattered power we need {It + 81]?), where
'f is the backscattered field from the surface h» and the average is
Since different
Fourier coefficients of the sea surface are statistically independent,
and since &¥ depends on h while v does not, the cross terms cf the
form ¥ ﬁt* vanish upon taking the average. Therefore, the average
h&ckscattered power is the sum of two terms, (]t 12) and (|&¥]?),
which we shall compute separately.

over the various possible forms of the sea surface.

It is convenient to define a scattering cross-section in order
to eliminate the distance of the observation point from the sea surface.
The energy density at any point is just |¢12. If a finite patch of
sea surface, of area A, is iiluminated and we observe at X = ﬁ'R, R
very large, tihen all the energy at % is flowing in the direction ﬂ'.
If the antenna subtends a solid angle A2, the total received power is
then |¢]%R% 22 and the received power per urit illuminated area is
|tI?R? K/A. We shall define the quantity 5 = li[zR?/A, so that an-
tenna power is o A AN

let us first compute o, = (| e¥]2YR%/A. If we make the standavd
aséumntions about the Gaussian NATure OI TNe Sed suriace, @4in Gene Gl
definitions

- (DN (0)) = € (X)
B AR - 5,8 5 (-1
we find that

= 0y’ [ 5, @ ok «

“/' ér exp[i{2E+Z)-5-(2ksinﬂ}2(Cd(0)-co(r})}
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where we should now remember that when we write k we mean k = (kx,k e
(kcosd,0). The largest contribution to the integral over T comes in
the neighbernood of =0, where we write

c (x) = h2(1-are ...)

so that
,/;i exp[i(2§+23-E-(2ksine)2(co(o)—co(r))] 2

f dr exp[i(2£+l)-§-(2ksina)2u 2] =

GXPE-(2R+132/4a<2xhsine)2] = £(2R+1)

(2khsin6)2

We note that in the 1imit a = 0, £(2k+1) - (2m)? & (2K+1). In fact
a is rather small:

9
2 z Yy o
Hoo = {32375 10) = (C/2) § aK/k: = s 30q. 0% 5D
(e} J R e S
K
c
L5107 og. s /6 )
e “wind radar

where A ;4 is the wavelength of those ocean waves whose velocity
equals the wind velocity. For a 10 m/s wind and a 10 cm radar wave-
length, we have h =0 9x10 . This means that in terms of the dimen-
cionless variable |2K+I| / 2ksin® the width of f is about 0.2 in a
typical situation. This width decreases slowly with wind velocity.

If we ignove the width of f, replacing it with a delta function,
we have the simple formula

4 2 5
L =BG 1 0)F 20
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If we include the effect of the wind broadening of f we sze that %

is proporticnal to the average value of T4EA(Z) over a circle of radius
= 0.4ksin® in 4-space, centered about % = -2k = (-2Zkcosd,0). In the
undistrubed ocean we know that ;i(%) = 2x10'34'4/n and therefore could
actually perform the average, if necessary. If we evaluate the zero-
width approximation to ©; in the limit n— (appropriate for the sea
surface since n = B0), we get

oi = (10h3/2ﬁ) tan4B

for the backscéttering cross-section from the undisturbed sea.

We now must compute o_ = (|¢0]2) Rz/ . Since ¢  is the field
generated by that part of the sea surface for which the approximations
of geometrical optics are correct we can adopt the classical results
for scattering light from a Gaussianly rough surface:

o, = (mh’a (25ind)*) Yexp(-cot?s/an’)

for backscattering. We note that %, falls off exponentially as &

W A e R e e
o T e e enpdalg

dominates o, while for 68 # 80 the reverse is true.

Wl s ke

- - o = g, oy 5 ™ - ~mm Ny
secreases. from o/2. In £23% we can casily s

At this point we may reasonably swmnarize ocur results: We have
found two basic regimes in radar backscattering; one occurs when the
angle of elevation is large, nearly 90°, the other occurs for moder-
ate elevation angles. In the first case, the backscattering cross-
section is a function of uhz, while in the other it is determined by
3&, the ocean wave power spectrum, at some appropriate wave number.
The quantity ahz, is just the mean square slope of the ocean waves,
which in turn is an integral over the complete wave power spectrum,
Therefore, the difference between the two regimes is that in one case
we measure 3&, at a point in wave number space while in the other we
measure what amounts to an average of p, over all wave number space,
This distinection will turn out to be most important in the applications.
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Finally, we would like to point out that the scattering of polar-
ized radiation from the sea surface may be calculated by much the same
methods, although the formulas are much more ccmplicated. We shall
refrain from writing them down here since nothing essentially new in
the physics of radar backscattering is introduced.
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III. THE EFFECT OF INTERNAL WAVES ON RADAR BACKSCATTERING

As far as the applications considered in this report are con-
cerned, we need to know the effect of an internal wave, over and above
the random background, on the radar return from the sea surface. The
ocean wave heights are in general described by the power spectrum
F(k) where

(h(x)n(0)) = fak F(R) eii'i

with F(K) = 355%:35:1 for the standard wind-generated sea. Hartle
and Zachariasen have shown that if an internal wave of phase velocity
C, wave langth L, and maximum surface water velocity Vb is present,
then the power spectrum is changed by

5E(k; o T 2-'52 re:if ?iﬁ{?ﬁ Tl"iicg:?f: o)

F(E) 5 2n TL'I(Cgcosa-C)

where ¢ is the angle between K and the direction of propagation of the |
internal wave, Cg = L/97k is. the group velocity of the surface waves
with wave number K, and T is the time during which these same surface
waves have been acted on by the internal wave. It is convenient to

introduce T = TC/L, which is just T measured in internal wave periods,

and e = vsjc 50 that

sin(2v3(C_cosg/C-1))

bF(R) e?rﬂ'cos2
ML s A e : ) £
E(R) ™ gcosa -1

In practical cases, € turns out to be very small. We note that for

small &, 6F/F is uniformly distributed over k-space, while for J >> 1,
g8
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6F/F is very 'sharply concentrated around the curve 'cg'r:bsé ‘C. This
turns out to have a profound effect on the size of the radar- retu:m j
for difierent values of U, e s e

We recall that if the angle of eievat:ibm, 8, of the 'radar beam
from the horizontal is not too lavrge, the backscattered power is pro-
portional to the average of F(K) over a circle in K-space centered at
. = (-2, ,c089,0) and with radius a_'k‘radar’ where a depends on win." )
B velocity but might typically be 0.1. Let us suppose that we have -

3 cleverly chosen k. . and 8 so that ﬁé lies on the curve Cgcose_= o
We now wanu to compute the ratio §P/P where P is the radar return from
the undisturbed ocean and P+&P is the radar return from the ocean in
the presence an internal wave. Let 0 (!E 3 [) be 1 for |k-k | <

& 2K, gap @Nd zero otherwise. 'Ihen

" fdﬁ 5 F(k) 0 ([k-kot)
< [ r®) a (RR D

There are two interesting regimes in which we want to calculate
o el g 313, 4f pﬂ'rcr' nprd}(‘ "I'l te qma11 fhﬂmlrﬂ‘l the

PR -
LTS - i - o

region where Q 1s 'IOI'I-ZEI'{), we hava 6F = -¢ 2rr:rcos ak ana

ARG el Eer s ey 8 e e iil veds o um goh

: g = _g2md c_oszﬁ -

: Cm the other hand, if 7 is very large, 6F/F — -cncoa m{c cosg/c_lj.
With our assumption that R is centered on the curve Cgcosg =C, we

BV

have
- g_f_' ST coszg

a

Because a is small, this ratio can easily be as much as 10e.
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IV. STATISTICAL CONSIDERATIONS

Thus far, we have shown how to calculate the backscattered power
averaged over a statistical ensembls of ocean surfaces. The question
of just what "averaged over an ensemble” means in temrms of physical
measurements remains. This will be our next topic.

One way of perfomming an average is ta look repeatedly at dif-
ferent pieces of the ocean surface which are far encugh apart to be
Statisticaliv independent. The minimun distance between two such
pieces is determined, of course, by the correlation length of those
properties of the ocean surface surface which are important in the
scattering process. Since the specular part of the scattering cross-
section depends only on the mean square slocpe, the correlation length
relevant for specular reflecticns iz clearly that for slopes, which
CUPNS ot o he soma tens 2f certimeters. Pin Sragg Soatterine ficar
tering from waves of a definite wavelength, the dominant process in
backscattering at moderate elevation angles) the high-frequency part,
3 hl’ of the elevation_determines the scattering. To find the correla-

tion length relevant for Bragg scattering we must, therefore, study
the correlation functisn ' '
- ey i 2 10‘3 .
Py(%-) = (hy Goh, (7)) = 20 f

ke

sz ke (-9)

Because it contains a factor k"4, the integral on the right is rapidly
Convergent and receives most of its contribution from the regicn

kc s k= ch' When l(i-?}[ is small compared to lc = 2nk;1, the ex-
ponential is essentially constant over this region and p(x-7) is of
order 2x10'3k;2. However, if |x-y| is large compared to Ae» the ex-
ponential factor oscillates rapidly and the integral is very smail.
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Thus, we may take the correlation lengch for Bragg scattering to be
something like lc which, as pointed cut above, will be a few radar
wavelengths. Al

Actually, the above correlation lengths are so small that they
are of little interest except in very special cases. To see this we
have to understand what happens when a radar looks at the ocean surface.

Suppose a radar illuminates an area A of the ccean surface. Re-
ferring to the above numbers, we see that in general A will be very
large compared to the relevant ccherence length squared, Imagine now,
dividing A into patches whose linear dimension is of the order of a
ccherence length. We can write the backscattered wave as zii where
*1 is that part of the backscaitered wave which comes from the i-th
patch., Then setting *i =a; e ¢i, we have

P = }: a;3; ei{ﬁj-ej)
1]

for the returned power. If we now average P over an ensemble of

statieirally indamcndone ~no-o k. UhZ:gvaraged power 13

(P) =¥ (a.a. e2(95-05)y o~ (.2
-i% 335 e 1; g: ag

which follews from the fact that the phases e are random.

There are now two questioné_: (i) What do we mean by independent:
areas? and (ii) How many areas are needed to determine (P) to a given
accuracy? The answer to the first question is almost trivial, In
order that the phases e19; be uncorrelated, the two areas must be non-
overlapping. We are assuming that the time difference. between mea-
surements is less than the decorrelation time of the phases. To
anser the second question, we need the variance of P. Here we appeal
to the well-known fact that for a sum of terms with random phases,
such as in the last equation, the variance is always of the sawe order
as the square of the average, i.e.,
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H(p-(p))*) = By .

This means, of course, that to measure (P) to, say, one part in ten,
we need one h‘r;:ndred separate areas,

. Notice that the above conclusicns are independent of the size of

‘the area illuminated by the radar (so lcng as its linear dimensions

are large compared to the correlation length). Thus, contrary to one's
first impressicn, the accuracy of a measurement of P does not improve
as the size of A increases. Also, it is clear that the magnitude of
the small correlation lengths does not enter in a critical way.

This perhaps surprising situaticn arises because a radar is a

coherent source of radiation. Suppese, on the contrary, that the source

of radiation were inconerent. If this were the case, the equation
given on the previcus page for the backscattered power should be re-
placed by

il(e.40/)-(p.427)]
“ - B -} o

where o is the phase of the incident radiation, assumed to vary rap-
idly with time and index i (this is te incorporate the assumption that
the incident radiation is incoherent). Averaging over a time long
compared to the coherence time of the ¢; gives

f 2
Py sme : ‘); aj .

average

The point is now, that the averags of z af ovar an ensemble of areas
A yives (P) as before, but the vari.ncs in T az is not of ordar (P}
but: rather of order _(P.‘(L"’/A)_g, where L isithe larger of the coher-
ence length of the radiation and the relevant coherence length of the
oczan. Thus, for an incoherent source the accuracy of a measurement
dces increass with A,
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The reader may wonder why, in the case of a coherent source, we
did not average the power equaticn over time in order to obtain a
result similar to that just described. The reason is that the time
scale inwvolved is vastly different. If an incoherent source has a
coherence length L, its coherence time is very small, being on the
order of L/e, where c is the velocity of light. With a ccherent source
the corresponding time is the coherence time of the ocean surfaca.
This is on the order of L}/v, wherz L' is a coherence length for the
ocean and v is a typical wave velocity. It is the large ratio cfv =
109 that makes coherent and inccherent sources so different.

Finally, it should be pointed cut that measurement of Bragg scat-
tering has some statistical properties which are different from those
of specular reflections. Suppcse, for example, that we make many
measurements of specular reflection from a single patch of ocean sur-
face using variohs wavelengths of incident radiation and angles of
incidence, but completing all the measurements within one coherence
time. The statistics of the measurement have not been improved in
this case. No matrer wnat angie or wavelengiii we use (u Jucasure
specular reflection we are always measuring the same quantity, namely
the mean square slope. Thus we might as well have carried out all the
measurements at the same wavelength and angle, gaining ne improvement
in statistics. Bragg scattering is different, however. By carrying
out the measurement at different angles and wavelengths we are measur-
ing different Pourier coefficients of the correlation function £y-
Since these Fourier components are statistically independent each
measurement gives new information and the statisties can be improved.
As an example, suppose we wish to measure p1(0) which is the Fourier
component integrated over 4-space. According to our formulas in Sec-
tion III, scattering at moderate elevation angles samples the Fourder
components of py over an area of order kradar?
is the mean-square slcpe of the ocean surface. Since there are m”~
such areas available, we can make m~ 2 independent measurements whose
sum {which gives pI(U)J will have a variance of m° times the variance
of a single measurement. Since m2 is of order 1072 this is a nen-

m2 in 4-space, where m2

2

trivial increase in statistical accuracy.
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o{x;=1

P

FIGURE 1. Scattering Configuration

——

W —e n, =(n-1)
m ——n =ain-1)

OTHERWISE n; =0
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dp = cosa dS

FIGURE 3. Transformation of Coordinates
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SUPPORTING ANALYSIS E

WAVELENGTH DEPENDENCE OF RADIOMETRIC SIGNALS

J.B. Hartle
University of Califernia, Santa Barbara
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To detect ripples on the surface of the sea by passive electro-
magnetic means several different wavelengths may be employed., The
question naturally arises as to which wavelength range is most suit-
able. The answer depends not only on the physics of the interaction
cf electromagnetic waves with the surface of the ocean but also on
the technology of detectors. In this section a compariscon of the
infrared and centimeter wavelength ranges will be made.

Several physical effects contribute to the detection of surface
ripples by electromagnetic waves. Only one of these will be considered
here. A detector puinted at the sea surface receives reflected radi-
ation from different portions of the sky due to the presence of the
ripple. Since the radiance of the sky varies with elevation, the
preserce of the ripples will lead to an average variation in the re-
ceived radiance and the detection of the ripples.

Quarntitotivoly, +ho cmentnal madisnea fnawer per nnit area ner
i ¥ na :

uantitatively, i

unit solid angle per unit wavelength) Hdet (s Edj received Irom a
direction given by a unit vector Hd at wavelength A consists of two
parts: (1) the reflected radiance cf the sky at a direction Es re-
lated to N, by the law of reflection and (2) the emitted radiance of
the sea itself. In terms of the spectral radiance of the sea wgea’
tha; of the sky wsky’ the reflectivity p of sea water, the zenith di-
rection z, and the normal to the sea surface N we write

W. (AN (1) (1)

det ' ’~d

)= n(h,z-N)Wsky (Asz°N_) + [l-p(l,z-g)]wsea

~ A NMS
‘The angle of incidence is related to the angle of reflection by

Bo= L+ NDN, @
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where I is the unit dyadic. For small sea slopes, N may be written

@8 z + e, Eq. (1) expanded in powers of € and averaged over the dis-
tribution of sea slopes. The averages of ¢ and g€ may be expressed

-in terms of the r.m.s. sea slope, m, by

(&) = - m’z

(¢e) = ¥ m® [T - 2z) 3

Expressed in terms of the zenith angle 8 we then have (see Appendix)
for the average variation in received radiance

W (,8) ; 2 azwsk 8 awsk awsk dp
det*™? e _"ggﬁx PR ‘33_2 + [o]:]

(4)
+ kW W) 3%, ot
sky - sea 232 % 0_ o9

The sky radiance contrast arises irom two sources--absorption and
elastic scattering. Elastic scattering is important only for wave-
lengths =24 because of the wavelength dependence of the elastic cross
Seciioh and the size distrilusicon of the zozttericg maweiclas.  Tn that
region, the sky contrast arises because on the average the reflected .
radiation originates one mean free path length away and there are more
scatterers at low elevations near the horizon than at high elevations
near the zenith. This effect can lead to strong radiance contrasts at
low elevation angles (see Fig. 1) of the order

scale height
(elevation angle) < { for scatterer ///(mean free path)
- density

<€ 1 km/10 km (1)

Observations at such small angles from airplanes are different because
at typical airplane heights the observation distance is comparable
with the mean free path. We will not consider the sky constant from

elastic scattering further,
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The important factor contributing to the sky radiance contrast
is absorption. On the average the reflected radiance originates one
attenuation distance L()) away at a height L(\) sin (elevation angle}.
Since the temperature of the atmosphere and hence the radiance varies
with height this will lead to a greater radiance at the horizon than at
zenith. The resulting contrast will be small for those wavelengths
where the absorption is large and large when the absorption is small.

Figure 2 shows the experimental sky radiance for various angles
in the infrared range. - No contrast is observed in regions of strong
absorption (e.g., Sp and 15¢) while the maximum contrast is obtained
in the region about 10uw. In figure 3 the sky radiance (and its equiv-
alent temperaturs) from this data at 104 is plotted as a function of
angie. BAlsc plotted on the same graph is the spectral radiance for
1.54 com normalized te the same height at 8 = 90°. Several features are
clear. Because atmospheric absorption is stronger &t 10¢ than 1.5 om
the temperature contrast is smaller in the infrared region than in the
microwave, However, because the dependence of radiance on temperature
in the infrared is exponential (hc/AkT ~ 5) while in the microwave it
is linear (hc/AkT ~ 1/50), there is not a great difference in the ra-

diance constrasts
These curves are the first elements which enter into a calcula-
tion of Ewdetfwdef' The second element is the reflectivity. This is

estimated from the standard Fresnel formulae. For the A = 1.5 cm the

. curves of these quantities are already in hand in Fig. 4

The largest value of awdet is obtained at high angles. At a
typical large angle of € = 75° we find by crudely estimating the de-

rivatives of these curves

Gwdet

det

2 0.6 m2, m in radians, k = 1.5 cm.

Taking a temperature resolution of 0.2 we have approximately for
A=1.54 cm.

b 8




éwdet:

inst

= 100 mz, m in radians

where ﬁwinst is the instrumental radiance resoluticn.

For the 10p wavelength the index of refraction was computed and
plotted in Fig. 4 using an index of refraction of 1.3. The curves of
W oF for horizontal and vertical polarizations are given in Pig.05g

d
Crudely estimating Eq. (4) for 8 = 75° ore finds

15Wdet

det

~ 0.6 mz, m in radians, A = 10p

The similarity of this number with that obtained for X = 1.54 cm re-
-flects the similarity of the sky contrasts at the two wavelengths.

If we take 4T = 0,01°K for the temperature resolution in the

infrared we find

oW, . T A cm

Thus for A = 10u

et 2
W~ 3000 m“, m in radians.

inst

The conclusion is then that the infrared is favored over micro-
wave radiometer by roughly a factor of 30, The basic reason for this
is that the window at 10y is sufficiently transparent that the sky
radiance contrasts are almost the same at the two wavelengths, while
the resolution of the infrared is Eetter by roughly a factor of 20.
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or
£ > (Bcosy, 8sin®, - 82/2) + 0(83) : .
# _‘ Therefcre, accurate to second order in 8, we have
Woet = Weiy [2 + [-L + 222 + 2(z¢ + €2) + 2e] - n,J
< =wsky[5-pﬁ+2£[(g,§+,g£)+u}‘p°]

wsky (&-gg)+w;ky[2£. (.?-E"'E.E.) - n0+2£, (.-E-Ep} 'Eo]

. 2
+2W oz e+ ez) o n 14 ... .

The following averages will be needed:
(&) = - (0% 2

(ee) = aLl + b 2z

a=3% (%
a+b=0 b=-}%(? :
(e = % (D) (L - zz]

Using these results, the first bracket in the expansion of Wier Decomes -

on averaging -2 (32) (z » no). The second bracket is equivalent to

25.5(1*,.2,@‘50]2 2ny+ T+28) - g8 - T+20) -1 .

n

GHp, - T+20) - G-20 - Tez - n

<9‘°‘>330 « @ -22 - n,

& {1~ (n, - 2)%1 = (62 sin?

i}

%
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where 80 is the angle of cbservation measured from the vertical. Thus,

Wyer = W(cos8 ) + (6%) [-2W’ coss  + W" sin“9 ]
Now
Pt k= Food dawWw 1
W' =35 sinm Wies sing dd (3'5' sinG)
2
£ 1 d'W cos8 dW
sind GE? sin39 ae
Thus,
W = W(e ) (92> 2w + cot8 e
det ~ o f ;g? ote 35

This computation was made leaving out the reflectivity. Actually,

W = . W .

det F(E Eo) sky (5 Es)

Zupending the reflertiuvity in the same manner as before,
ol -n)=p(z-n +g-n)

"

plz » no) + p'(e « no) +% p(e nO) + .a.
Including the extra terms in the expression for wdet

Wier = lp+ 0" (- n )+ (%) p"(g - 50)2]{ Ysky
+ W [2z . (2 +=3}'ﬂo+?§,(£§,)g0]

SKy ~ ] ——

+ (2 - (324 g2) - .{’.(;]2;
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EXTRA TERMS azw S
2 Sk sk
R o W Ve s oot 5

+ 2 - n) [z« (ze+e2) - 0,0 w;ky

+ p'{le - Eo))wsky + (0" (g - 50)2) wsky

The first average is equivalent to

(8%/2) n, + (2 - 22T + 28) * 1,

"

B, (eI + 20 - R,

e’ n, - (L- 20 -1,

~—

«8%y/2) sinzao

: M RN =
The second average 13 SITPLY \\U F7<£) wUS v o+ s el GVIISZE is

eedn = ((8%)/2)sin%s

%o o

Assembling these results and moting that {92) is equivalent to the
‘mean-square slope mz within the approximctions used here, we obtain

3% aw
=W +m? ﬁH+cata—a—§ﬁz

wd et sky 38

S b (ap Spc Load AP
. _53—2 {F" sin“3 + (m°/2) cotd 3& sky

sin™§

z
+ (n¥/aysin®s |2, 25 - o Zeiw,



iy iy

A ke R P

The net result is that the veriation in radiance is given by

X

2 sk awsk
Wdet:m p—a;rii- cotn-é—é—x

M o) [ 2% 2
" _Eggx S% 1 (k)quy s;% + coth 5%

This expression accounts for the contribution to the variation in

received radiance due to the first term in Eq. (1). The contribution

of the second temm can be obtained by inspection of the above expres-

sion (replacing wsky by waea and noting that W___ is independent of 8).

Thus, the contribution of the second term is

~

2
= 2 3°n dp
&W = "(m /4) wﬁea 'e";"‘f + coth bv-)

Corbining these results yields Eq. (%) of the test.
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SPECTRAL RADIANCE (W em 2™ ™)

e R

Spectral rodiance of a clear sky, showing the dependence of the

e dunk
WAVELENGTH ()

SPECTRAL RADIANCE (W om™2 5! p" )

scattered radiation on elevation angle. Meosuremenfsomada from Colorudo
Colorado, near noon in September; elevetion angles 0 (top curve),

(lowest curv:}

Springs,
7.2° and SBg
Note thet the ordinata scala for the short~wavelength set of curves
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seq level.

Florida.

14.5°, 30%, and 90° above the horizon.) Ambient Inmpnmfure B °C;
mured ot night in Saptember from Elk Paork Station, Coleoredo, 11,000 ft above

Ambient temperature cbout 27°C; measured in June from Cocoo BGoch, .

(From Bell et ol 1960]
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FIGURE 4. Reflectivity
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SUPPORTING ANALYSIS F

DECISION THEORY RPPLIED TO SENSOR EVALUATION

S. Courtenay Wright
Enr.co Fermi Institute for Nuclear Studies,
University of Chicago
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Sophisticated signal processing is claimed by scme of its advo-
cates to make possible remarkable improvements in detecticn systems.
While this is true in scme cases, in others the claims are extravagant.
This note is written to provide a basic criterion for detection that
depends only on hardware capebility and by which ultimate performance
limits can be set: limits that can be approached but not surpassed
by astute processing and presentation. The basis for this is the work
of Harris® on decision theory. The derivation of one of his main re-

sults is abstracted here for completeness.

We will look at the detection problem as a binary decision between
two signal sources denoted I and II, with the signals accompanied by
additive Gaussian nolse. For definiteness, take a two-dimensional data
presentation with mean flux densities of HI(x,y} and HII{x,y] for the
sources I and II. The likelihood that & set of flux resdings Ry, R,
.-+R_with dispersions cf, cg s ai for patches of area dxav is ob-

R e

Served L Lebplaiac ko Source

i
& 1 Dgni
L) = ;."_r; ——— expl-(R; - Hp; &xay)*/2¢]]
Bindy VoW O
i
where R; is the flux measured at the display point (xi,yi), and Hy, =
HI(xi,yi). Similarly, the likelihood of the same readings in response

Yo source II is

A 1 2,0
L3

1
2n o‘i

This formulation assumes that the incremental area Axay is sufiiciently
large for the observed readings Ri to be regarded as statistically

independent.
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For the purpose of this discussion, the relative risks of error
in deciding that scurce I is present when scurce II is really present,
and vice versa, can be ignored. Under these conditions, the decision
rule is to select the alternative with the larger likelihood. In terms
of

¥ = 21oglL(I)/L(II)]

the procedure is to decide that I is present if § > 0, and to decide
that II is present if § < 0. Specifically,

s 2 2 2 e
¥= X (/eI-2R (Hyp, - H) axay + (52 - Hp3 (80" (a)%]

i=l

Row suppose that scurce I is actually present; then

Ri = HIi AXAY + ny
with
A P
(ni) = o7 = v.8xay

Here, n; Trepresents the additive Gaussian noise, and ¥y is the
noise variance per unit area. Substituting this into the expressicn
for ¥ yields ;

2 z
=P Uipe 7 T ) hdy - > 2n; (Hppy - Hpo)
i=1

i=1 Vi

7

The mean of §_ can be expressed as
I P

() = By (072
By ‘j] V5, 9) Gy
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The integral is taken over the area of presentation (e.g., the field

~of view of display). The variance of *I is calculated to be

2
2y = 4
The probability of correct decision (i.e., that *I > 0) is

RGaL0
pi= (:Nz_w}f o /2 gz )

-p/T

The probability of a correct decision depends on the single parameter

1

% :
W/T = (%) lf (s/12 axdy (2)

when N denctes the background noise per unit area.

. Well-matched Drocessing ang data preSeitalivic cen weike full ol-

vantage of the signals provided by detecticn equipment, but cannot

- improve the probability of a correct decision over that implied by

Eq. (1) and (2). ; . 5
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