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EXECUTIVE SUMMARY

Overview

As part of the 1995 Summer Study, the JASONS undertook an assess-
ment of the field of quantum computing. The current flurry of activity in
this field is fueled by the discovery in 1994 by P. Shor of an efficient quantum
algorithm for finding the prime factors of large numbers. Because no classi-
cal algorithm of comparable efficiency is known, the supposed fundamental
difficulty of the factoring problem has ensured the security of the RSA public
key cryptosystem, which Shor’s algorithm now brings into question. How-
ever, beyond the domain of cryptology, the marriage of quantum mechanics
and information science represents a potentially profound development with

possibly far reaching implications.

Unfortunately any definite assessment of this field without qualifiers
is currently impossible because of the dearth of significant results beyond
the brilliant quantum algorithms that Shor presented 1.5 years ago. While
proponents of the field believe in a prodigious future, this belief currently
rests on a very small set of truly significant results. If quantum computation
is to change the future in a major way, then there must emerge a much
broader class of applications than are known today. Without a more wide
ranging set of possibilities, the impetus for conquering the daunting issues

associated with physical implementation is to large measure lost.

Apart from the actual implementation of quantum computation, the

potential impact of this new paradigm on classical computation should not be
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overlooked. It may well be that new perspectives offered by the investigation
of quantum algorithms may well lead to more powerful classical algorithms.
Unlike the physical implementation of quantum computation which is at best
a long-term endeavor, such insight could more or less immediately advance

the state of the art of classical computation.

JASON Activities

To attempt to address these and other issues related to quantum compu-
tation, the JASON Summer Study pursued a broad investigation principally

along the following avenues.

1. A preliminary exploration of several new research directions to attempt
to broaden the purview of quantum computation. Included are the
simulation of general quantum systems, function minimization by sim-
ulated annealing, and the application of quantum many-body tech-

niques.

2. Designs for the first explicit quantum circuits for Shor’s factoring al-
gorithm. From this work emerged estimates of the scaling behavior of
certain quantum circuits and of the nontrivial nature of the “scratch-
pad” problem. The inevitable tradeoff between intermediate storage

and computation length was quantified to some extent.

3. Assessment of several physical systems for possible implementation of
quantum computation, including condensed matter, optical, and ion-
trap systems. In combination with the explicit JASON quantum cir-

cuits, estimates have been made of the requirements for the ratio of
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coherent to dissipative time scales.

Recommendations

As a result of these activities over the course of the 1995 Summer Study,
our rank-ordered recommendations for possible ARPA support of research in

the area of quantum computation are as follows.

1. Establish a research program to investigate possibilities for quantum
computation beyond Shor’s algorithms. Here we have in mind the
fostering of a fairly intense effort over the coming years to understand
the types of problems for which quantum computation is well suited
and whether or not new insights do indeed arise for developing more
powerful classical algorithms. The two principal communities involved
would probably be those of theoretical physics and computer science
(but not to the exclusion of other groups). Clearly, as new quantum
algorithms are developed, it will be essential to address the issue of

error correction as well.

2. Seed research in various communities for quantitative minimization of
algorithmic complexity and optimum circuit design. Given the extreme
value of qubits of information in terms of the degree of difficulty of phys-
ical realization, it is quite important to have explicit quantum circuits
with quantitative measures of resource requirements (beyond simply “a
polynomial of order k”) in order to bridge the gulf between abstract
quantum algorithms and actual physical implementations. The JASON

quantum circuits provide an important step in this direction, even if
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they prove to be less than optimum in the ultimate conservation of

qubits and ops.

3. Supplement ongoing experimental research related to the isolation and
control of discrete quantum systems suitdble for quantum logic. Here
the research objectives may not be specifically quantum computation,
but may be instead fundamental components thereof such as the in-
vestigation of quantum dynamics in nontrivial Hilbert spaces (e.g., the
generation of quantum-state entanglement for more than two qubits
and the role of dissipation). Given the tremendous disparity between
current laboratory capability and the requirements for a nontrivial im-
plementation of Shor’s algorithm, we would specifically advise against
a program of “prototype development”, but would rather supplement
research on diverse fronts with modest goals rather disconnected from

a “Holy Grail” pursuit of quantum computation.

Overall, we feel that the most pressing need with also the greatest po-
tential, is for a broad theoretical exploration for opportunities beyond Shor’s
algdrithms. If the “well” proves to be “dry”, so be it. On the experi-
mental front, we do not believe that there is a similarly pressing need for
ARPA involvement. Although there are a variety of promising systems, the
most optimistic near-term hope would be only extremely modest “proof-of-
principle” demonstrations from which we doubt any profound new insights
would emerge. Therefore, we recommend that ARPA should not shoulder
the principal burden for funding of experimental efforts, which should not

in any case be justified solely for their relevance to quantum computation.




However, ARPA could play an important role in ensuring that the eﬁcperi-
mental and theoretical communities remain engaged. Should an explosion
of possibilities ensue from the theoretical investigations, then it may well be
worthwhile to consider increasing the investment on the experimental front,
bearing in mind that the time horizon for the experimental realization of

quantum computation will still be distant.

Finally, we would urge the adoption of a broad-minded view for oppor-
tunities other than those related to large-scale computation, such as might
arise in quantum cryptography [38] or coherent nanoscale electronics. This

is a long-term endeavor of potentially profound significance where surprises

are likely to emerge on diverse fronts.




1 INTRODUCTION

Although the field of quantum computing has a history that dates to
the early 1980’s, [1] there has recently been an explosion of activity driven
by the discovery of P. Shor in 1994 of an efficient quantum algorithm for
factoring a large number into its prime factors.[2, 3] Factoring is an important
problem because its supposed fundamental difficulty provides the basis for
the security of the widely employed RSA public key cryptosystem. Stated
more quantitatively, if L = LogoN is the number of binary bits in the number
N that is to be factored, then Shor’s quantum algorithm requires a number
of computational steps G that scales as a polynomial function of L, G ~ Lk.
By contrast, no such polynomial time algorithm is known for factoring on
a classical (conventional) computer, where instead the degree of difficulty of

the factoring problem is roughly (sub)exponential in L.

Beyond the example of factoring, quantum computation has the poten-
tial for a profound impact on the whole of information sciences. Expressed
most succinctly in terms of computational complexity, the outstanding ques-
tion is “Can quantum computers solve efficiently ‘difficult’ problems that
are otherwise intractable on classical computers?” To answer this currently
unresolved question, progress is required on several fronts, including the ex-
pansion of the library of quantum algorithms beyond those of Shor and the
investigation of the feasibility of the actual physical implementation of a

quantum computer.




1.1 Study Charge

Driven by these developments with respect to quantum computing and
other recent results in the area of molecular computing with DNA, ARPA

tasked a JASON study of the “Boundaries of Computing” as follows:

Advances in computing speed and power have, to date, mostly
relied on packing transistors and resistors ever more densely on
a silicon substrate. There is a consensus that this line of ad-
vance will eventually peter out (on a one- or two-decade time
scale). Ideas for a totally different style of computing, dubbed
quantum computing, have recently surfaced. It relies on the non-
Boolean logic implicit in measurements on pure quantum states
and promises such miracles as the prime factorization of numbers
in polynomial time. Practical realization of such a scheme would
have dramatic implications for cryptography and, no doubt, for
other military applications. Most discussions of this subject have
been at the purely mathematical level and JASON proposes to
do a preliminary study of the practical issues and opportunities
which will arise when material realizations of these schemes are
attempted. Other issues, such as “biological computing” (ala
Edelman) and new paradigms of networking will be discussed as

appropriate.

As a result of this charge, two principal activities were undertaken dur-
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ing the 1995 Summer Study. The results of the investigation of quantum
computation are reported here; a separate JASON report (JSR-95-116) gives

our findings relative to DNA computing.

To initiate our study of quantum computing, we held two days of brief-

ings that included the following speakers.

C. Bennett (IBM)-Quantum Communication and Cryptography

D. DiVincenzo (IBM)-Physical Systems Overview

A. Ekert (Oxford)-General Introduction to Quantum Computing

R. Hughes (LANL)-A Proposed Prototype Experiment with Trapped Ions
S. Lloyd (MIT)-General Physical Requirements and Quantum Networks
D. Wineland (NIST)-Experiments with Trapped Ions for Quantum Logic

A. Garg (Northwestern) also participated as an expert (non-speaker) on
dissipation. Later in the summer, we were briefed by D. Dubin (UCSD) on
various aspects of binding and instabilities for trapped ions and had discus-
sions with M. Roukes (Caltech) on coherence in nanoscale condensed matter

systems.

Based upon these briefings and our own ensuing research, our study
has addressed three principal topics. The first is an attempt to expand the
purview of quantum computing beyond the singular examples of factoring
and discrete log presented by Shor. Several promising research directions
have been identified which are worthy of future investigation and are de-

scribed in Section 2 of this report.

The second area of activity concerns the design of quantum circuits.
At the outset of our study, there seemed to be only fairly vague statements

about the quantitative resources that would be required for the implemen-




tation of Shor’s factoring algorithm. There apparently existed no explicit
layouts of quantum circuits that gave the number of primitive logic opera-
tions and quantum bits needed to implement the algorithm. In response to
this situation, explicit JASON designs of appropriate quantum circuits have
been developed, as described in Section 3. The importance of this work is
that it not only enables us to make definite quantitative statements about
quantum “resources”, but it as well permits an understanding of the scaling
behavior of the network and of the critical need for the efficient manage-
ment of “scratch” or “garbage” qubits. Furthermore, from our designs we
can glean some improved insight into the impact of dissipation (Section 4)
and the consequent requirements for candidate physical systems for quantum

computation, which is the third principal area of our study (Section 6).

In an assessment of possible physical realizations, we should emphasize
at the outset that no system has yet been shown to be sufficient to the task of
quantum logic with entangled states even at the level of a single two-bit gate,
much less at the scale of a large quantum computation involving thousands
of qubits. Nonetheless, in recent years there has been rapid and important
progress in the isolation and controlled interaction of discrete degrees of free-
dom for simple quantum systems. Indeed, this is an area whose scientific
growth has been fueled on diverse fronts quite independent of the recent ar-
rival of possible applications to quantum computing. Still there is a daunting
(some would say impossible) gap between theoretical requirements to imple-
ment Shor’s quantum factoring algorithm on a nontrivial scale (e.g., for a
200 digit number) and current or near-term experimental capabilities. In

our (incomplete) survey, we consider condensed matter and optical systems,
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as well as an explicit scheme involving trapped ions.

1.2 What is a Quantum Computer?

We present here only the briefest sketch of the basic ideas related to
quantum computing. An excellent overview of the field can be found in the

review article by Ekert and Joza.[2]

To begin with, note that bits of information in a classical computer
which take on values [0,1] are replaced by quantum bits (or qubits) in a
quantum computer. The bit values [0,1] in the quantum case are associated
with the states of some simple quantum system, such as an elementary spin
[down, up] or internal atomic states [ground, excited]. A classical register
such as {1,0, 1} which stores one of 2" numbers (L = 3 bits here) is replaced
with a quantum wavefunction to describe the state of the register, where for
example {1,0,1} represents the state of three particles with (spin up, spin
down, spin up), respectively. An extremely important distinction between
classical and quantum registers is that a quantum register can operate with

superposition states such as

lv) = ; CalA) = Cio0|0}[0)|0)|0 + Co01/0)[0)|1) (1-1)
+Co10/0)[1)|0)
+  Cour [0)[1)[1) + Ci00]1)(0)]0) + C101]1)]0)]1)

+  Cuol1)|1)|0) + Cr11|1)[1)]1),

which represent all 2 numbers (here L = 3 again) and hence in effect store all
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possible numbers [0, 1, 2, ... 2871] at once. Superposition states as in Equa-

tion (1-1) are the source of what has been termed “quantum parallelism”.

From a formal perspective, the evaluation of a function F for an input

A on a quantum computer involves the unitary transformation
0)]0) — [A)|0) — |A)F(A)), (1-2)

with A an integer [0, 1, 2, ... 25~1]. Here, the bit values for A are held in
a “data” register, while those for F are contained in a “function” register,
with each “—” representing a suitable unitary transformation on either the
A or F registers or both. In less formal terms, we will see in Section 3 that
the transformation of Equation (1-2) can be accomplished by a network or
circuit of suitably arranged quantum gates operating on the bits of A and

F(A).

Because the A and F registers are quantum in nature, we can compute F
via “quantum parallelism” for all possible A values with the same effort that
it took to compute F for only one specific value of A. Instead of preparing a
single input A, we extend Equation (1-2) to generate a uniform superposition
of all A values (Equation (1-1) with all C,4 set to 2-%/2, which is a state that
can be generated efficiently). In this case, Equation (1-2) becomes

10)10) — >_1A)0) — XA:IA)IF(A)), (1-3)

A
where the sum is over all integers [0, 1, 2, ... 2'}]. Unfortunately, although
the output register now contains all possible values of F(A), it is not possi-
ble to “read” this register in the conventional sense of a classical register. A

quantum measurement will project only one value for F(A), with an exponen-
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tially large number of reported calculations (~ 2£) required to tabulate F for
all A. Hence, there would seem to be no gain associated with the “quantum

parallelism” of the calculation.

This situation is quite different if however we wish to extract not the
entire table of values for F, but instead some global property of I such as
periodicity for a periodic function. In this case we proceed as above, where
now the projection F(A) — Fy (with Fy as the recorded value as a result of
the measurement on the function register only) leaves the data register in a
uniform superposition of states for which F(Ap)=Fo and which exhibit the
periodicity of F(A):

{Z le)} |Fo) = {|1) +16) + [11) + ...} |Fo), (1-4)

Ap

for the case with F(l) = F(6) = F(11)=F, (period r=5). The (unknown)
period r can be extracted efficiently by way of a quantum Fourier transform
on the data register A. Hence, by preparing a uniform superposition for the
input register A, we can with a “single” calculation of F(A) extract a global
property of F that would otherwise have required an extensive tabulation
by repeated calculation of F(A) over the q=2" values of A. We therefore

apparently gain an exponential speedup in the calculation.

1.3 Quantum Factoring

Although we will not here go into the details of Shor’s factoring algo-

rithm, suffice it to say that in the simplest possible terms, it is based on
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the efficient determination of the period r of the function F(A) = X4 Mod
N, where N is the number to be factored and X is randomly chosen (and is
coprime with N). Here A ranges over all intege‘rs from 0 to g, with N2 < q <
2 N2, with L = Log, q. Since in practice N is a large number (> 100 digits),
F(A) must be computed over a gigantic set of numbers (> 10'%), leading
to the difficulty (and hence the supposed security) of the factoring problem
on a classical computer. However, because of the exponential speedup as-
sociated with “quantum parallelism” as illustrated in the preceding section,
Shor’s quantum algorithm is in principle able to find the prime factors of N
by finding the period r of F(A) in a number of steps that is polynomial in
L. No such polynomial time algorithm is known for factoring on a classical

computer.

1.4 Quantifying the Essential Character of Quantum
Computation

The JASON investigation attempted to address opportunities and dif-
ficulties associated with quantum computation. Apart from any issue as-
sociated with physical implementation, if we again consider a register with
L qubits, then the “good news” of quantum computation is that L qubits
can be used to describe states in a Hilbert space of dimension 2V. Hence 2%
inputs can be accessed via the “quantum parallelism” of an L-bit register
and correspondingly many function evaluations can be carried out in one fell

swoop [2" vs. LJ.
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The “bad news” is multifold and begins with quantum measurement
which restricts our ability to access completely all 2¥ aspects of our output
state with only a polynomial number of measurements L¥. Furthermore, al-
though L qubits describe states in a 2v dimensional Hilbert space, we are
not able to make arbitrary transformations in this space, since a general uni-
tary transformation reQuires “resources” of order 2" (in terms of the number
of parameters to describe the transformation or the number of gates to im-
plement it). Hence, although “quantum parallelism” gives us access to a
gigantic space of possibilities, we still have to live within an exponentially
smaller budget of order L¥ in our attempts to assess this space [L vs. 2L).
Stated somewhat differently, because only an infinitesimal number of all pos-
sible unitary transformations in a space of dimension 2" can be generated
from L¥ parameters [for L >> 1], there is a demand for extreme ingenuity in

finding “useful” quantum algorithms.

Finally, there is an important aspect of quantum computation related to
the issue of the management of “garbage” qubits. Since a quantum calcula-
tion must proceed reversibly, any function evaluation which is not one-to-one
(as in the evaluation of F(A) for Shor’s quantum factoring algorithm) must
have an accompanying register which contains information that could be used
to reverse the calculation. While this situation is well known within the con-
text of classical reversible computation,[4] quantum computation adds a new
twist in that the garbage or scratch qubits become entangled with the input
and function qubits. The consequence of this entanglement can be under-
stood with reference to the example of the evaluation of a periodic function

given in Section 1.2. The requirement for extra garbage qubits means that

15



the step of function evaluation in Equations (1-2) through (1-3) actually in-
volves a third “scratch” register initially filled with 0’s and finally filled with
the appropriate information for each F(A) so as to allow the calculation to
be reversed. Hence, the state in Equation (1-4) is not really simply a sum
only over values Ag corresponding to Fo , but each term contains as well a
different appended state specifying the state of the garbage qubits. The net
result is that a quantum Fourier transform of the state will not yield the
desired period r unless steps are taken to first clear the garbage. To circum-
vent this difficulty, the procedure to follow is that first suggested by Bennett
within the context of classical reversible computation and essentially involves
copying the desired result and then reversing the entire computation.[4] The
cost of this procedure in the quantum context is high. There is a need for
more qubits (which as we will see are a very precious resource) and more
operations. State vectors are thereby forced to live longer in a higher dimen-
sional Hilbert space than would be the case in the absence of garbage qubits,

which leads to an increased sensitivity to dissipation.

Apart from this “bad news” arising from issues of principle, there are a
variety of challenges associated with the physical implementation of quantum
computation. We stress again that no system has displayed sufficient capa-
bilities for the realization of even simple quantum logic, much less quantum
computation in a large dimensional Hilbert space. Motivated by this obser-
vation, we will discuss in Sections 3 through 6 a variety of topics relevant to
bridging the gulf between abstract quantum algorithms and actual physical

implementations.
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2 POSSIBILITIES BEYOND SHOR’S AL-
GORITHMS

In this section, we review the progress made by various JASONSs in
attempting to find new quantum algorithms and applications for quantum
computing beyond Shor’s algorithms for discrete log and factoring. Our
objective has been to gain further insight into the operation of quantum
computers. In addition to quantum algorithms per se, it is also a worth-
while endeavor to explore the possibility of “quantum inspired” algorithms

for classical computers.

The initial condition for our investigation is a paucity of substantial
problems for which the quantum computer has a natural applicability. This
situation exists not for want of effort; there has been an intense effort by many
groups around the world to rush forward into the same stream where Shor
discovered his golden nuggets. However, the absence of significant output
from this endeavor is troubling, since if quantum computing is to have a
profound impact on the futures of the physical or information sciences, then

necessarily the range of topics encompassed must be greatly expanded.

2.1 Level Sets; Solutions of Homogeneous Linear Equa-
tions

One of the more problematic aspects of quantum computing is the

17




paucity of substantial problems for which it has a natural applicability. In-
deed, the only problems where quantum computing apparently succeeds and
conventional computing fails (at least at this time) are those of factoring
a very large number and the discrete log problem. Curiously, these two
problems appear to be the drivers behind much of the current enthusiasm
for quantum computing, but if the development of this technology is to go
forward rationally, other large problem areas to which it is naturally and

advantageously suited must be found.

Now the investigators in this area are well aware of this shortcoming, and
have tried to find such problems, but so far without success. The principal
thrust of research to date appears to be the construction of potentially useful

quantum gates and theoretical research on foundational problems.

In order to examine the situation further, we decided to have a hard
look at the factoring and discrete log algorithms as discovered by Shor, and

try to broaden their purview.

- From a fundamental point of view, the algorithms appear to succeed
because of modular periodicity, coupled with the power of the Fourier Trans-
form for exposing periodicity, and all carried out at the quantum computing
level. The Fourier Transform is natural in this setting because it is a uni-
tary transformation, and so can represent the evolution of the state vector
of a physical system, but also because it can be built out of simpler unitary

transformations, the parts of the Fast Fourier Transform.

If one could take directly at the quantum level the Fourier Transform of
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a function, periodicity would show up immediately. But the direct Fourier
Transform is not a natural operation in quantum computing. In Shor’s algo-
rithms the Fourier Transform is introduced by a subterfuge, and some further

analysis is needed to extract the desired answer.

What we are going to try to do here is extract the underlying principle
of some of Shor’s procedure, and show incidentally that it is not exactly

periodicity which makes it work.

We suppose we have a quantum mechanical system in a uniform super-
position of states labelled (0,0) to (g — 1,4 — 1), ¢ = 2 — 1. The states
might correspond, for example, to two sequences each of L particles, with
spin labelled 0 or 1. We are interested in deriving properties of a function f
(f may be vector valued), defined on the states (i,5), 0 < i, j < ¢—1, and
by some means, quantum mechanical in nature, we have got our quantum
computer into the uniform superposition of states |a,b, f(a,b)). Physicists
like to write |a)|b)|f(a,b)). We would really like to compute the discrete

Fourier Transform of f, and resort to the following alternate device.

Using a sequence of unitary transforms arising from steps of the Fast

Fourier Transform, we bring our computer, instantaneously, into the state

1 % T e =5 4 f(a,b)) .
| a,b

A measurement which yields |c, d, eg) has probability

2

1 Z i ectbd
e q

9 f(ab)=eo

19

R



where the above sum is over all pairs (a,b) for which f(a,b) = e,. What
we are seeing, in fact, is just the magnitude of a component of the Fourier
Transform of the characteristic function of f~!(eg). We never see more than

this, just Fourier transforms of characteristic functions of subsets.

The probability of |c,d,ep) is clearly greatest, ¢ and d variable, when
¢ = d = 0, and unless we get coherent sums for some reason, we will never

see |c,d, e) for other (c,d).

Moreover, if the particular level set f~'(eo) is substantially larger than

many others, we will never see Fourier information about these others.

So let us take a level set f~!(eq) which is as large or larger than any

-actb

other. What does it take for %Z Flab)=eo 245 46 be roughly as large in
magnitude as the same for ¢ = d = 0. A relatively easy criterion, which
is roughly the one that Shor uses, requires that the set {ac + bd}, as the
pair (a,b) runs through f~!(eo), shall, when taken with least residue mod g,
satisfy

—% <{ac+bd+K}q<%

for some K. We call the pair (¢, d) a multiplier for the level set.

Geometrically, this simply means the least residues lie in a narrowish
stripe. The phases of the corresponding summands now all lie on a half
circle, and they will add semi-coherently. The expected Fourier component
has a magnitude % times the (0,0) component, on the assumption of uniform

distribution in the half circle.
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The condition described above is sufficient, but by no means necessary.
It is the criterion exploited by Shor in a setting which carried substantially
more structure. Particularly, all his level sets were of the same cardinality,
and all had the same set of multipliers. The desired information on period-

icity was extracted from opportune multipliers.

For a general function such as we have been describing, the high prob-
ability measurements suggest that, and nothing more, a certain level set has

“strong” linear regression mod gq.

We are not certain how to use this structure algorithmically.

It is interesting, however, to look at the special case where the function

being analyzed is (vector valued) linear and thus, for example,

f(a’ b) = (Ll(a’ b), L2(a’b)’L3(aa b)) .

A level set is either empty, or an affine “plane” of some dimension.

Let N be the subspace of solutions (mod ¢) to the homogeneous equa-

tions Ll = O, L2 = 0, L3 = 0.

If N consists of the zero vector alone, the only states with substantial
probability after Fourier transforming are |0, 0, e, f, g), where L; =€, Ly = f,

L3 = g has a solution (mod g¢).

The situation with N non-trivial is similar. The only states with sub-
stantial probabilty are |c,d, e, f,g) with (c,d) perpendicular to N and the

equation L; = e, Ly, = f, L3 = ¢ having a solution (mod ¢).
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In more detalil, if (c,d) is not perpendicular to N, the state |c,d,¢, f, g)
has zero probability for any e, f,g. This statement is not entirely trivial,
depending as it does on the fundamental theorem of finitely generated abelian
groups. For our particular case, it says that the subspace N of solutions to
the homogeneous system is freely generated by some appropriate solutions

U1, Ug, ... Up. That is to say, every neN is of the form, and uniquely:
n=1tu; +t2uz+---+t,,up

where each ¢; goes from 0 to 2% — 1, and 2%u; = 0 mod ¢, no smaller power
of 2 annihilates u;. With this result in hand, the more detailed statement

about (c,d) not perpendicular to N follows readily.

To assist the reader in understanding this result, we remark that N is
not a vector subspace in the usual sense, so does not have a basis in the usual

sense. Fortunately, it has a “basis” in the sense just described.

Thus by quantum computing we can decide whether a homogeneous
linear system has non-trivial solutions. This facility could possibly be incor-

porated into useful numerical algorithms.

2.2 Simulating Quantum Systems — The Hubbard Model

One possible use for a quantum computer involves the efficient simula-
tion of other quantum mechanical systems. This application is different in
spirit than the classical application such as factoring. There, the basic idea

is that the quantum coherence accomplishes many calculations in parallel,
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with the hard problem being the collection of the information desired from
the final state. Here, the desired answer is some expectation value in the
original quantum system which maps onto some (“few-body”) operator in
the qubit quantum dynamics — this part is in some cases straightforward.
The harder part is finding an efficient encoding® of the true Hilbert space
into the qubit space which allows for simple time evolution steps. Here we

discuss how one might do this for one particular case, the Hubbard model.

The Hubbard model is a simple Hamiltonian meant to describe the
physics of electrons in solids made out of transition metals such as copper.
The idea is that there are two allowed states per site, a specific orbital with a
choice of spin £1/2. Electrons can hop from one atom to the next with some
amplitude w which depends ultimately on the overlap of atomic orbital wave
functions; the size of this then determines the width of the electronic band.
In addition, electrons on the same site suffer a large Coulomb repulsion U.
This model and variants thereof have been studied extensively in recent years

in the context of high T, copper-oxide superconductors.

Because of the interest in this and other quantum systems, much effort
has gone into devising simulation strategies. For example, the equivalence
between quantum mechanics in imaginary time and classical statistical me-
chanics allow the use of the Monte Carlo technique for computing a variety
of interesting objects. However, simulations which offer information about
the real time correlation functions (and these are the ones most relevant to

experimental measurements) have to date been ad-hoc. Basically, one could

1Hard for Shor-type computation as well.
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study either very small systems or alternatively employ ad-hoc truncations of
the Hilbert space so as to get around the exponential number of coefficients
in the real space time evolution. Here, we argue that one can do at least

some quantum simulations in polynomial time on a quantum computer.
For the Hubbard model
H=-W3Y 3 4l berao + U D $hterth vn
£ o £
where ¢ = T or | represents a spin, Z labels points on some lattice and @
is a lattice vector. For U = 0, we get a free electron band with energies

Ex = —wcos Ka, 0 £ K < 7 /a. The basic idea here is to use two qubits to

represent one site, with the identification

00) = 10)
10) = |1)
01) = |])
1) = |in

We then write the overall time evolution operator as the product of a large

number of time evolution operators for a small time interval At
—1i [t . At
Texp—h—/o Hdt' = Ir:[exp———ﬁ—H
1At
= H [H <exp _‘"ﬁ—Uiplﬂprw;lwxl) :

1At
€xp — e (W) ("ﬁ:z,a'(ﬁﬂa,a + h.c.)}

up to terms of order (At)?. Each of the individual unitary transformations

acts on a two qubit Hilbert space. The U term, for example, corresponds to
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a controlled phase rotation

|00)z — |00)z
|01)z — |01)z
|10)z — |10)z

|11)z — e*[11)z

The hopping term couples qubits corresponding to the same spin at different

spatial sites. This term gives the unitary transformation (for ¢ =T, say)
|0-)z[0-)z+&  unchanged

|1}z |1-}z4a  unchanged
0-)z [1-)z4+a — isin § |1-)z [0-)z4a + cos B 0-)z |1-)z4a
1) 10-) 246 — i8in §10-)z |1-)z4a + cos B 1)z |0) 514

where a and  are simple numbers, and the - means that we don’t care about

the state of the ion representing the down spin at either site.

Both of these operations are easy to implement. Also, the objects which
are of interest for physics purposes are matrix elements of few body Heisen-
berg operators between states; for example, the density-density correlation

function is
(‘I]O |1/314 N (t)"p:t’,a (t)lbl,a (O)wx,a (0) | @0>

where the “hat” above the operator denotes the Heisenberg picture. Going

over to the Schroedinger picture which we have been using, this becomes
(o) 9y oY .o €L 120 l800(0)) -
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Since we are mostly interested in poles of this structure thought of as a
function of space and time, we can usually take any reasonable choice for the
initial state — if we actually need to have the ground state expection, we
would need to use this formulation to adiabatically turn on the U interaction
starting from the non-interacting Fermi sea filled up to the Fermi energy.
Once we have the initial state, acting on it with the Hermitian operator ')
is just a projector onto all states with an electron at site X. .Once this is
done, the time evolution carries the system to time ¢, another projection is
done and then the inverse time evolution (from t to 0) leaves one with the

final step of taking the overlap with the initial wavefunction.

One remaining point to consider is the size of the time step. A rea-
sonably conservative choice might be related to the inverse of the maximum
energy in the problem — this is of order NejectronsU (for U > W), and hence
the time step probably scale as 1/Neectrons ~ 1/Nsites for a fixed filling frac-
tion. Since this is a polynomial slow-down in N for a fixed total time of
simulation, it does not significantly detract from the efficiency of the simu-

lation.

2.3 Quantum Computers as Many-body Systems

Quantum computers can be thought of as peculiar quantum many-body
systems with non-local and time-dependent interactions between the compo-
nent quantum bits (qubits). The qubits are prepared in some initial state,

carried through a prescribed series of unitary transformations (which we refer
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to loosely as “time evolution”) and then various observables are measured
to give “the answer”. The “program” of a quantum computer then resides
in both the sequence of unitary transformations and the particular measure-

ments made in the final state.

Quantum many-body systems have long been a part of physics. Numer-
ous theoretical methods have been developed for describing such systems ei-
ther approximately or exactly (mean-field or semiclassical, RPA, variational,
stochastic simulation) and these correctly answered many physically interest-
ing questions before experiments became possible. It is therefore intriguing
to ask whether the application of these same methods to quantum systems
“that compute” might be similarly successful. Modest success would be de-
fined as some insight into how quantum computers work, their error rates,
etc. A more substantial achievement would be application of these methods
to Shor’s quantum factoring scheme to produce a “quantum inspired” fac-
toring algorithm that could be implemented on an ordinary (deterministic)
computer, thus circumventing the need for explicit physical realization of the

quantum computer.

The purpose of this section is to begin the application of classic many-
body methods to quantum computers by considering the semiclassical ap-
proximation (mean field plus corrections). The approach is to reduce the
very high-dimensional quantum dynamics (Hilbert space of dimension 2L for
an L-qubit system) to the evaluation of a high-dimensional (of order L or

L?) integral, which is then approximated by the stationary phase method.
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Quantum computers as many-body systems

A quantum computer consists of L input qubits, a mechanism for effect-
ing a unitary transformation upon the high-dimensional Hilbert space that
they define, and a mechanism for measuring one or more of the qubits after
transformation. Conventionally, the qubits are spin-1/2 (two-state) quantum
systems (so that the Hilbert space has dimension 2L) although it may be con-
venient later to consider generalizations where each is a spin-j (25 + 1-state)

quantum system, in which case the Hilbert space has dimension (2j + 1)£.

Computation is effected by specifying some initial state of the input, |i),
applying the unitary transformation to obtain a final state |f) = Uli), and
then observing one or more qubits in the final state. The input state is most

commonly (but need not be) taken to be of the direct product form,

|3) = [ili)2. .- [

where |i); is the state of the I’th qubit. For example, in Shor’s factoring

algorithm, the initial state is the coherent sum of all integers,

2l
\/Qf 2_% la) = \/- |0>1+|1)1)\/_(|0>2+|1)) \}5(,0)”;1),;)_

The unitary transformation produced by a network of G quantum gates can
be written as an ordered product of G one- and two-bit unitary transfor-
mations of the forms exp(iaA) and exp(iaAB), where A, B are operators

affecting bits a and b, respectively. Thus,
U = UGUG—I ‘e U2U1

where each of the U; is a one- or two-bit unitary transform. It has been

shown [22] that one- and two-bit unitary transformations are universal, in
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the sense that all quantum computations can be realized by a sequence of

such gates; an efficient quantum algorithm will have G polynomial in L.

In the measurement process, the L output bits are divided into three
classes: P bits that are prescribed to values (by,...,bp), M bits that are mea-
sured to have values (m,,...,my) and T bits that are traced over (ignored),
such that P+ M + T = L. Thus, the probability of measuring outcome

(my,...,mp) for the M measured bits is

S U
Plm) = & 1 omtlUiF °

where the sums are over a complete set of states for the traced and/or mea-

sured bits.

If we define a “final state” operator F as

P
=1

where P is an hermitian projector for the prescribed bits and the O,, are

the observables for the measured bits, we can write the mean value of a

meaéurement as
_ (s|UtPOU4)
() = @|U+PUGY -

It is quantities such as this that we will attempt to approximate via semi-

classical methods.
Hubbard-Stratonovich representation of quantum networks

The difficulty in constructing or simulating a quantum network arises

from the two-bit gates, as one-bit transformations can be represented by
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2 x 2 matrices. The strategy of the mean-field method is to represent the
two-bit gates as an infinite sum over a product of two one-bit gates, and
then to use only the “most important” terms in that sum. The more general

semiclassical method considers also terms “near” the most important ones.

A two-bit quantum gate effects a unitary transformation, U, on two
qubits that is generated by a two-bit operator. The form of the gates required
is

U = ¢—ieAB
where « is a c-number and A, B are commuting hermitian operators referring
to the two bits. [More generally, there may be further one-body transforma-

tions, which pose no additional problem.]

A Hubbard-Stratonovich representation of U is

o too iaoT —taTA _—iaoB
U= 5 / dodre*® e e ,
T J—oo

where o and 7 are two real fields. Thus, U is represented as an infinite

superposition of one-body transformations.

As an example, consider the Controlled Not gate acting on two qubits

a (the “control”) and b (the “target”):

C = (_i)a eimadzs e—i?m/2 eisz,,b

where a = (J., + 1/2) has eigenvalues 0 and 1. Thus, C leaves the state of
b unchanged if a = 0, while it inverts b (rotates by = about the z-axis) if

a = 1. The Hubbard-Stratonovich representation of C is
1 » ra(r—1/2) incd
C = —E/dO'dTe inoT eura.(T / ez
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Similarly, the Controlled Phase operator appearing in the Quantum Fourier
Transform, @ = exp(iwab), which applies the phase w if both a and b are 1,

can be written as
w . . .
Q — _5_ /dO’dTe twoT ewra ew'rb .
m

By invoking the HS representation for each quantum gate in a network, we
can represent the total unitary transformation involved as an integral over
2G fields:

U= [ Doe'Tesem,

where Do is the measure over all auxiliary fields, the sum in the exponent is
over all two-bit gates, and U, is an ordered product of one-body evolution op-
erators stemming from both the Hubbard-Stratonovich decompositions and

the one-bit gates.

To evaluate quantities of the form (as shown above), it is convenient to

introduce an additional field x and consider the quantity
Z(x) = (|UT PeX° PUIiy

so that (O) = —i0InZ/0x|y=0. Upon introducing Hubbard-Stratonovich
representations for both U and U™ (auxiliary fields ¢ and ¢, respectively),

we can write

Z = / Dges
where the action is

S(0) =Y ay(o47y — 0,7;) — iIn(E| U PeXC PU,|i) .
g
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The stationary phase approximation

The simplest approximation to In Z is that of stationary phase, where
we seek those field configurations at which the action is an extremum; i.e.,
8S/80 = 0. Let oo be such a mean field configuration. Then the naive
stationary phase approximation (SPA) is In Z = S(oy), from which it follows

that
(0) = (&|Us POPUli)
— (GUS PUle)

where Uy = Uy . . . Up is the one-body evolution operator under the station-

ary fields.

The condition that S be extremal implies a set of 4G equations of the

form
(i|Usf PUsgg . - - Uog+1AUqg - .. Un1|7)
(1|Ug" PUs i) ’

o, = Re

where A is an operator for one of the qubits involved in gate g; these deter-

mine the stationary fields self-consistently.

Several remarks should be made at this point. First, there may be more
thé,n one stationary solution, in which case their individual contributions
must be added coherently and interferences can occur. Second, it is easy
to show that time-symmetric solutions (o'’ = o7) always exist, and that
solutions breaking this symmetry occur in time-conjugate pairs. Third, when
P = 1, so that no qubits are prescribed in the final state, the self-consistency
conditions reduce to the familiar Time Dependent Hartree Fock equations, in

which each qubit of a gate evolves in a field generated by the instantaneous

wavefunction of the other; the mean fields are then independent of the final
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state. However, when P is different from 1, the evolution is non-local in
time and the mean fields depend upon the measurements made. Fourth,
quadratic corrections to the naive SPA can be readily evaluated; these involve
taking determinants of matrices of dimension 4G. Finally, it is important to
note that while the mean field method is most easily carried out when the
initial state is a direct product, correlated states can be handled and any

correlations present will influence the mean field results.

Example: The Controlled Not gate

As an example of the application of the mean-field technique, consider
a single Controlled Not gate as defined by the operator G. Suppose that for
an arbitrary initial state |I), the final state of the control qubit is prescribed
to be |p) = pol0) + p|1) and the average value of the control bit, (b), is

measured. We can represent this computation graphically as

+ [ la> <al

<b>

Since it follows that C*tbC = b+a(b_ —b), where the operator b_ = 1-b,

the exact result if

By — (i|CT PybCli) B (|C+P¢C(b+a(5— b))|i)
R To 2y W Ty S FiToz3 W )

where Py = [9)(¢] is the projector for the final state of the control qubit.
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the exact result if

GICHPBCL)  {|CHP,C(b + a(® — b)|i)

(b) = GICFP,Cli) (7|C* Py Cli)

where Py = [¢)(3}| is the projector for the final state of the control qubit.

In the mean field approximation, the stationary configuration is

(iIUSLPzanoli)
o' =0 = Re-— :

(i|Uq PyUsls)
Py R,,<i|Uo+PwabU0|i)

" (G|UG PyUsli)
Here,

UO — eirm(‘r—l/?) eim:rsz = Uan

is the mean field evolution operator. If we define P, = U; P,U, the mean

fields can be written as

g = Rew ; T = Re (zlP¢~J$b|Z>
(i Fyli) (i Py i)

and the required observable is

(| Pyli) (il Pyli) (il Pyli) (@l Pyli)

To understand the validity and limits of the mean field approximation, one

o™ + . o A . S-S .1 1A .
(b) _ <2IP¢Ub bUb|Z> _ COS2 (%) <1|P¢b|2> +sin2 (E) <ZlP¢b|Z> Sil’l(?I'O') <Z|P¢be'2) .

2

can consider several limiting cases. When |¢) is a “pure” state (i.e., |¢) = |0)
or |1)), we find ¢ = 9 and mean field and exact results agree. This is sig-
nificant observation in that it demonstrates conditional dynamics: results of
observing the target bit depend upon the prescribed final state of the control
bit. This is not an obvious property of an approximation involving only one-

body evolution, which might be supposed to make all qubits independent of
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one another. However, it arises at the mean field level through the final-state

dependence of the mean fields.

When |a) is not a pure state, insight is more difficult. However, there is
some simplification when |¢) is a product state, such as |7) = |i,)}is). Consider
for example the case for which the control bit is both nput and measured in
a state |a) = ao|0) + a1|1), the target bit is input in the state |0), and then

its mean value is measured in the output. Thus,

<al < < la>

b? < < lo

The exact result is easily found to be

B Y
(b)ez = laol* + |a1* (1= (a))2+ (a)2’

where (a) = |a;|? is the average value of the control bit (in either the initial

or final state).

To evaluate (b) in the SPA, we find the time-symmetric mean fields to
be 7 = 0 and

(alae™™/%la)  |aa|*

= Re : =
7 (ale=™2la) "~ Jaol® + |as]®

= <b>ez

so that the required observable is

(b) = (O|e_i7m‘]’ beim"]z](» = sin® (7(_20_> = gin? (”(2%:) .
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Note that the mean-field and exact results agree when (b) = 0,0.5, and 1,
and differ by at most 0.11 when (b)e, = 0.22 and 0.78.

Other examples like those above can be worked out, with the effort
growing as the number of two-bit gates involved. For example, the inclu-
sive observation of one of the output bits of the two-bit Discrete Quantum
Fourier Transform [6] yields a trigonometric function of the input one-body
expectation values that is exact in the limits of an “aligned” input state (all
input qubits either 0 or 1) and interpolates between them, much as in our

results above.
Summary and future considerations

We have considered the application of one of the standard techniques of
many-body dynamics (the mean field approximation) to quantum computa-
tion. A Hubbard-Stratonovich decomposition of the action of each two-bit
gate represents the exponentially difficult many-body evolution as a super-
position of many one-body evolutions, each in a different one-body field.
The stationary phase (mean-field) approximation to the resulting integral
reduces the problem to that of one-qubit quantum dynamics, which is only

polynomially difficult.

The formalism and methods were demonstrated by application to a sin-
gle Controlled Not gate. For an arbitrary initial state, the mean field approx-
imation to the average value of the target qubit in the final state is exact
when the control qubit is measured to be in either “aligned” state, and inter-

polates between these two limits when the control qubit is in a rotated state.
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However, this apparently fails when a specification of the target bit is used
to determine a measurement of the control bit, the prototype of quantum

function inversion.

We have not considered explicitly the quadratic corrections to the mean
field results. These would involve the correlations among the fields, ulti-
mately coming down to the manipulation (determinant, inverse, etc.) of
2G x 2G matrices. Consistent with experience in other quantum systems, it
is likely that these would improve the naive mean field observables, although
the extent to which this is so (and the degree of dependence upon the specific

quantum computation considered) remains to be demonstrated.

The failure of the mean-field in solving the simplest function inversion
problem is perhaps the most troubling result. It is clearly associated with
the fact that although the control qubits are unaffected by the unitary trans-
formation, measurements of them are affected by the projection associated
with measurements of the target bits. However, a deeper understanding of
the phenomenon is desirable. It is possible that the defect could be remedied,
since mean field results often depend upon the particular way the Hubbard-

Stratonovich decomposition is implemented.

2.4 Simulating quantum physics on a quantum com-
puter

Feynman[5] has pointed out that simulation of even simple nonrelativis-

tic quantum-mechanical systems on a classical digital computer can involve
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exponential effort because of the very large dimension of the Hilbert spaces
involved. A system of L interacting spins at fixed locations, for example,
occupies a Hilbert space of (2s + 1)’ dimensions (for spin s). This has lead
to the suggestion that some exponentially difficult computational problems,
even if they bear no relation to physics, might be solvable with polynomial
effort on a quantum computer. In this section, we return to Feynmann’s orig-
inal observation and ask what class of physical quantum systems might one
simulate in polynomial time on a quantum computer? The answer appears

to be that it is (or includes) a large and interesting class.
Simple closed nondissipative systems

The dynamics of a single spinless point particle of mass m moving in a
potential V' (z) is described by the Hamiltonian

2

_ P
H= % + V(x), (2-5)

where the momentum p is Fourier conjugate to z. The unitary operator that

evolves this system from time t; to 5 is an exponential in H:

[%(t2)) = Ulte, t1)eb(t1)) = exp[—2mi(ts — t1)H/h)1Y(t1)). (2-6)

Henceforth we adopt units in which Planck’s constant h = 1. The position
z is a single real number for a particle moving in one dimension, or a set of
d real numbers for a particle in d dimensions. For notational convenience,

d = 1 until further notice.

Since z is a real number, the position eigenstates |z) of the physical

system live in an infinite-dimensional Hilbert space. To simulate this system
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on a quantum computer, we are forced to reduce |z) to a finite number (L)
of qubits, whose collective eigenstates we may regard as fixed-point binary

approximations to z:
T~ (go+2q+...+28 g y)Ax, (2-7)

where Az is the smallest-resolvable difference in position, and each qr €
{0,1} labels the eigenstates {|0),|1)} of a two-state system (qubit). For
convenience, we write simply |z) for a simultaneous eigenstate of the L qubits
approximating x. Since we cannot represent numbers larger than Tmax =
(2F — 1)Az in the form Equation (2-7), we regard the system as periodic in
x:

|T + ZTmax) = |2), V(T + Tmax) = V(z). (2-8)

As always, the physical system can be represented by momentum eigen-
states |p) instead of position eigenstates |z). In the simulation, these two

bases are related by a unitary transformation
Urrrlz) = 27423 ™% |p), (2-9)
P

which can be implemented by Coppersmith’s [6] quantum mechanical Fast
Fourier Transform (QFFT). The representable values of p are integral mul-
tiples of 27£Az~!, and the simulation is periodic in momentum as well as
position space:

lp+ Az™") = |p). (2-10)

The simulation will proceed iteratively in time steps of size At, where

to avoid aliasing one should choose
At < (2Emax) ™, (2-11)

39




if Emax is the largest energy representable in the simulation. In addition to
the L “coordinate” qubits needed for x or p, the simulation will require Ny
“function” qubits to represent V (z)At or (p?/2m)At, plus some number N, of
“garbage” qubits needed during the computations of V(z)At and (p?/2m)At.
The garbage bits include tables of fixed constants such as the mass m and

At. Thus a typical state of computer would be

>_a(@)lz)dl f(2))1lg(2))s (2-12)

where the subscripts on the ket vectors distinguish the coordinate, function,

and garbage sectors, and each a(x) is a complex amplitude.

It is important that the function and garbage qubits return their initial
state (= |fo)slgo)s) at the end of each iteration; fortunately this can always

be arranged by a method due to Feynmann, as explained below.

Each time step is divided into the following stages:

1. Compute V(z)At, by applying a unitary tranformation Upe that is

diagonal in the position representation:

U (Sa@leld sl ) = StV @At oy, (219
We assume that Uy can be implemented in a polynomial (in L) number

of elementary quantum gates when V' (z) is a discrete approximation to

a mathematical function that can be written in closed form.

2. Apply a phase to each position eigenstate according to the value rep-

resented by the function qubits:
Un(0 £ alz)lz)|V(z)At)slg(x))s)
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= I exp[-2miV(z)At]a(z)lz)|V (2)At)slg(2))g.  (2-14)

This will require at least Ny distinct gates. The n*" gate takes the nth
function qubit as input and applies a phase factor exp[—2mi2"~V¢] if the
qubit is in the |1) eigenstate, but leaves the |0) eigenstates unchanged.
Heren € {0,..., Ny—1}. Gates like these are needed by the QFFT also.
Since a position eigenstate of the entire computer is a direct product
of qubit eigenstates, applying a phase to any qubit is equivalent to
applying the same phase to the computer as a whole. Clearly this

stage requires N single-qubit operations.

. Next apply Upt to the output of stage 2, obtaining

> exp[—2miV (z) At]a(z)|z)cl fo) 1190)s- (2-15)

This is a version of Feynmann’s trick for “resetting” garbage bits. In our
case, the trick relies not only on the reversibility of Upet, but also on the
fact that Upy is diagonal in any basis where all of the function qubits
have definite values, so that the application of the phase Equation

(2-14) does not prevent Up from resetting the f and g qubits.
. Now apply the FFT Equation (2-9) to obtain

Urer (S 8@kl bl ) = SAG bl (210
where

B(z) = exp|-2miV (z)At)a(z), (2-17)

By = 273 e B(a) (2-18)
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5,6,7. By a sequence of unitary transformations U U, Uy, analogous to the
sequence UyotUpnUpor Of stages 1,2, 3 above, apply a phase exp[—iF (p)At]
to each momentum eigenstate |p)c|fo)|go) in the sum Equation (2-15).
Ideally we would take F(p) = p?/2m, but we must be contented with
some more complicated approximation to this, for two reasons: First,
p?/2m doesn’t satisfy the periodicity condition Equation (2-10). We
could cure this by using Fi(p) = [1 — cos(2rpAzx)]/ (72 Ax*m), which is

equivalent to a finite-difference approximation; that is,

_ |z + Az) - 2|z) + |z — Az)

2mAz? (2-19)

Fi(p)lz) =

Fi(p) has the periodicity property Equation (2-10). Second and more
importantly, however, p?/2m and F)(p) are too “large”. The largest
eigenvalue of Fi(p) is 2/mAx?, so that to satisfy the anti-aliasing condi-
tion Equation (2-11), we would be forced to a timestep At < mmAz?/2,
which is exponentially small in L for fixed Zyax [cf. Equation (2-7)].

So instead, we should use something like

F(p) = __Vhilp) (2-20)

V& + R(p?

for the kinetic-energy operator, where Vg is comparable to the max-
imum value of the potential V(z). The operator Equation (2-20) is
~ p?/2m for small p, is monotonic in Fj(p), and has the required peri-

odicity.

8. The timestep is completed by applying the inverse Fourier Tranform

Uzpr to return to the position representation.
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Steps 1 — 8 apply the unitary operator

exp(—2miAt Hyin ) exp(—2miAt Hpo ), (2-21)
Hyin = F(p), (2-22)
Hpot = V(LL'), (2"23)

to the state of the corhputer. The momentum p has been put in boldface
to signify that it is a differential operator—not a number—in the position
representation. What we really wanted, however, was not the operator (2-21)
but rather exp[—27iAt(Hyin + Hpot )], and this is not the same as the operator
((2-21)) because Hyin and Hpe, do not commute, since one is a function of
momentum and the other of position. Nevertheless, (2-21) is unitary, and
therefore it can be written as exp(—2miH At) for some hermitian operator
H, which we can regard as the effective Hamiltonian of our simulation. It

follows from the Baker-Hausdorf formula that
H = Hyn + Hpor — iA[Hyin, Hyot] + O(AL). (2-24)

In fact one can approximate Hyin + Hpot to second order with no extra effort
simply by alternating the order in which one applies the kinetic and potential

operators at successive iterations:

exp (—2miAtHpot) exp(—2milAt Hyin) exp(—2miAt Hyip) exp(—21iAt Hyoy) =

exp {—2mi(2A8) (Hyn + Hpoy + olat?)} (2-25)

Have we avoided the exponential slowdown?

If one wants to simulate a one-dimensional quantum system with a

Hamiltonian of the type Equation (2-5) on a classical computer, one does
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not keep track of a complex amplitude a(z,t) for every one of the 2% possi-
ble z’s that ¢:n be represented on a machine with an L-bit word; to do so
would be exponentially difficult. Instead, one assumes that the wavefunction
a(z,t) has some smoothness with respect to z and represents it on a grid
with spacing éx much larger than the machine precision Az This is equivalent
to restricting the simulation to a polynomially large number of states with
momenta < i/Ax. The scheme of the previous subsection, which requires a
quantum computer, uses a wavefunction with 27 distinct spatial arguments.
Thus it can represent states with momentum as large as i/Az. This much
larger state space is somewhat illusory, however, because in order to avoid an
exponentially small time step, we were forced to replace the finite-difference
kinetic energy operator Equation (2-19), which dices the wavefunction on the
scale of the machine precision, with a regularized version such as Equation

(2-21) that has much less resolution.

Another way to view the situation is as follows. Let N(E) be the number
of states of the system with energy < E. In a simulation with time step At,
energy eigenstates with energies differing by integer multiples of 1/At suffer
the same phase change at each time step. Therefore, the number of states
that can be simulated without aliasing is N(1/2At). Since the number of
operations required to evolve the system over a fixed interval T scales with
the time step as T/At, the algorithm we have described here is efficient if

N(E) is a rapidly increasing function of its argument.

Quantum simulation is much more advantageous when the number of

degrees of freedom (d) is large because N(E) tends to increase exponentialy
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with d. Consider for example a particle moving in a spherically symmetric
power-law potential V(Z) = V|Z|* in d dimensions, with @ > 0. Then
N(E)  E*¢, where v = (a+2)/(2a). Note that the number of qubits needed
to represent the state rises only linearly with d, and the number of operations
required to compute thed kinetic and potential energies normally rises only
polynomially with d; this depends upon V' (), but it is true for many-body
problems with two-body interactions (in this case d is proportional to the
number of bodies). For the power-law potential above, the number of states

that can be followed with a fixed time step increases as (T'/At)*<.

Therefore, if one measures the size of the problem by the number of
degrees of freedom, then the quantum computer does offer an exponential

advantage over the classical one.

2.5 Cold Baths and Optimization

A broad class of important computational problems require minimiza-
tion of a continuous function f of several variables (z,, s, ...24) = £ When
d is large, the absolute minimum of f can be exponentially hard to find be-
cause the number of local minima is proportional to (R/£)? if R is the typical
size of the domain in any one dimension, and £ is the scale over which f varies
significantly. But if one is content with a suboptimal solution, a choice of Z’s
for which f is much smaller than usual but not absolutely minimal, then the

problem may be only polynomially hard.
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For large d, such problems are often attacked by the method of simulated
annealing. This algorithm executes a weighted random walk in the Z domain,
with weight exp(—/£f), and is inspired by a physical analog: it imitates a
classical particle in a potential f(Z) and in contact with a heat bath at
temperature 8~!. The “temperature” is gradually lowered in hopes that the

“particle” will settle into a deep potential well.

We now consider whether something analogous to simulated annealing
can be carried out on a quantum computer. Let the simulated system consist
of two parts: a particle moving in d dimensions with potential V(Z) equal
to f(&£), or possibly some monotonic function of f; and a set of M spin-1/2
spins. The two parts will be weakly coupled. The hamiltonian for the total
system is

H=Hy+ H, + eH, (2-26)

where

Hy=F(p) + V(Z) (2-27)

depends only on the position and momentum of the particle, and
H,=G(d},...,oM) (2-28)

depends only on the z components of the spins. Here ¢]* measures the
component of the m* spin along the z direction and has eigenvalues +1/2.
The function G should probably be chosen so that H, has as many as possible
distinct eigenvalues, 2. For example one could use a pseudorandom number
generator of period 2M that maps every M-bit integer (representing a spin
configuration) to another M-bit integer (proportional to the energy of that

configuration). Since H, depends only on the ¢7*, which commute with
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one another, the energy of the spin system can be measured precisely by

measuring all of its spins.

The interaction hamiltonian H;,, must be chosen not to commute with

H; or H,. For the sake of argument we will take

Hiy = C(ﬁ) 2021 (2'29)

but there may be better choices. Notice that since C(p) depends only on
momentum, the interaction does not “measure” the position of the particle
at all. The parameter ¢, imagined to be small, controls the strength of the

interaction.

The scheme for minimizing V(&) is as follows.

1. Prepare the particle in a uniform superposition of all positions, and the

spins in the configuration of lowest energy ().

2. Evolve the system through some number of time steps N, o ¢71.

3. Measure the spin configuration and reset it to .

4. Repeat steps 2 and 3 as many times as necessary.

The total energy of the system, the expectation value of the total hamil-
tonian H, is not changed by the evolution in step 2. (Actually the conserved
hamiltonian A will differ slightly from H by O(At) or O(At?), as explained
above, but this is not important.) Because of the interaction, the spin config-

uration will generally change and will increase its energy. To the extent that
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the interaction is weak, the increased energy of the spins (i.e. (H,)) must
come at the expense of the energy of the pa.rticlé ((Hg)). Thus by iterating
steps 2 and 3, we gradually lower the energy of the total system and hence
the energy of the particle. Eventually, the amplitude for the particle to be
in its ground state will be large, so that we can measure & and have a good
chance of finding the particle in the deepest potential well. At that point

classical Newton-Raphson iteration will locate the absolute minimum.

As yet, however, we have not determined whether this procedure offers
any speedup (i.e., saves operations) compared to classical simulated anneal-

ing, even in principle.
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3 QUANTUM NETWORKS

3.1 Circuits for Quantum Computation

It is traditional to refer to the data flow graph of a program of reversible
computation as a circuit, as could be directly implemented in hardware if
desired. Quantum computation must always be reversible and thus quantum
programs are also called circuits. The operations are specified by instructions
(fetched and issued by an ordinary computer) and are called gates in the
circuit descriptions. Bits are known as qubits, and their quantum state is

considerably more complex than that of ordinary bits.

All fundamental operations (gates) and all series of operations (circuits)
for quantum computation must be fully reversible. In general no measure-
ments are allowed within the circuits. This means that intermediate nodes
(qubits) must be returned through reversed operations to constant values,
before they can be reused. The physical implementation of quantum com-
puting apparently can maintain system coherence only over a limited product
of the number of qubits and the number of operations. As a result, of this
coherence limit, the first important resource to conserve in quantum circuits
is the permanent consumption of qubits. Second, the number of operation
steps (gates) must also be conserved. Third, the complexity of primitive op-

erations (gates) should be minimized by choosing the least expensive
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operation (in terms of physical operation complexity) when operator choice

is possible.

It can be shown that only a single bit Rotate operator and a two-bit
Controlled-Not operator can realize any quantum calculation. However, we
are more concerned with what can be efficiently implemented. Thus we will
employ two more operations, the three-bit Controlled-Controlled-Not, and a
two-bit Rotate. Thus these four gates will be our choice for a set of gates.
In addition we need operations to set a qubit to zero (Clear) and operations
to read the values of qubits (Measure). Cirac and Zoller [9] have shown how
to realize all these operations by simple physical steps within the context of

a linear array of trapped ions.

3.1.1 Qubit and State Representation

The above set of four primitive operations, referred to as ‘gates’, are
used to perform quantum calculations. These operations must be performed
by é physical system such as a laser shining on a suitable array of trapped
ions. Each ion, if it were independent of the others, would have two spin
states, down represented for our purposes by zero and up represented by
one. The coupled array is represented by a superposition of all possible
combinations of all up/down states. Thus for L ions, we have 2L possible
combinations of spins, to represent each possible system state. Each state
of the system will have an associated complex amplitude o whose squared

magnitude represents the probability that the system of ion spins is in that
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state. This is denoted as
O!k'b b _2...b0 >

where the b’s are ‘qubits’ (quantum bits) set to represent k expressed in
binary. For example

a3|011 > .

For economy of representation we will represent a system state as a list of
possibly complex numbers, a with oy appearing on the right hand side (or

bottom) of the list. For example for a two spin system
S = as|11 > +a2]|10 > +a;]01 > +ag|00 > .
We will usually only show
S = |as, a2, a1, ),

so that individual spin state identifiers are only represented by their position
in the list. Complex numbers, when used, will be denoted either by the
notation

(Qnr + 10mi)

or

O, gién

or more frequently only by the 2-element list
[Clr, ai]

where the real part of the complex number appears to be the left and the
imaginary part to the right. It will generally be embedded in a larger state
list as:

S = [Qnr, Qnil, overerrereenen [aor, oi]-



For example the system ground state would be:

So = [[0,0[0,0], -....[1, 0]

Operations are applied to a state so to produce a new state s; as
opr(z)|So >= |51 > .

Operations must be, by the laws of quantum mechanics, unitary transforms.
Thus in general opr(x) will always have a unitary matrix representation. In
practice, this matrix may be too large to express explicitly. The primitive
operations all manipulate the values and positions of the a’s, and each rep-
resents one or more physical manipulations applied to one or more of the

ions.

Operations compose. That is, a string of operators can be composed
to form a new operator using a higher level compose operator o. The new
operator can be applied to a state to produce a new state. Its components

are evaluated right to left. For example

|S1 >= opr(z2)o opr(z;)o opr(zo)|S, >= (opr(z,)(opr(z;)(opr(zs)|Se >))).

In general we can employ a compose operator and express the above
formula for example as

2
|So >= O opr(z;)|So >
j=0
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3.2 Operations

3.2.1 Measurements

After a series of operations on qubits, as represented by a circuit (or
program), the ‘answer’ is measured by the physical system. The measurement
determines an actual state of the quantum computer that will exist after the
measurement is made. Any given state, that is possible, might be observed .
It will occur with a probability factor |al? associated with the observed state.

A measurement constitutes the only output of the quantum computer.

3.2.2 Clear Operation

The clear operation ‘cools’ a qubit to zero and is designated clear (k).
By successive application clear (k) can ‘cool’ the system to zero such that aq
= 1 and all other a’s are zero. This means all ions have a down spin after all
the clear operations occur. This is the operation ‘clear’ and is the first step

in any calculation.
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3.3 Gates

3.3.1 Controlled-Not

The Controlled-Not gate (operation) x(I,J) was devised and named by
Feynman [7]. x(I,J) performs a type of logical exclusive-or operation on
two qubits, I and J where qubit I remains unchanged but qubit J becomes
the exclusive-or of I and J. It performs a unitary transform specified by the

matrix:

1 000
0100
0 0 01
0 01O0

In our list representation, this means the a’s with qubit I = 1 are swapped

by pairs identified by qubit J. For example

2}(2,0)[07!111,&6'110 >,a5|101 >,a4|100 >,a3|011 >,&2|010 >,C¥1|001 >,00|000 >]

= [as|111 >,07]110 >, 04]101 >, a5|100 >, a3|011 >, @2]|010 >, a1]001 >, ap|000 >

Since we generally only show the values of the alphas, this example
would be

Sl = [aﬁ’ a7, 4, Qs, 03, O, 0, aO]-
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The circuit diagram for this operation (gate) is:

with truth table:

INPUT OUTPUT

In physical terms, a Controlled-Not can be implemented on an array of
ions as a laser pulse that only causes a state change if the system has pairs

of energy levels that match the laser frequency (energy) and pairs that do

not.

| J 1 J’
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

3.3.2 Controlled-Controlled-Not Operator

The Controlled-Controlled-Not x(K,I,J) is equivalent to a logic circuit
composed of an AND operation an XOR operation. It is a Controlled-Not

additionally conditioned by bit K. It performs a unitary transform specified

by the matrix:
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1 000 00 O0O0
01 00 0O0O0CDO
0 01 00 O0O0TO
0 001 0O0O0TO0
0 00010000
0 000 O01O0TUD0D
0 000 0 O0 01
0 00 00O0OT1TO
It has a truth table:
K I J|IKT1UJ
0 0 00 O O
0 0 110 0 1
0 1 0[/0 1 0
0 1 110 1 1
1 0 0(1 0 O
1 0 1{1 0 1
1 1 0f1 1 1
1 1 111 1 O
and symbol
K K
| |
J J!

3.3.3 Rotate Operation

The rotate operation r(¢,J) is applied to a single qubit (ion) and shifts
the probability amplitudes ap and a; of the individual qubit. In the full state
representation of the system, this operation, chooses by pairs, states that are

identical except for bit J, and rotates the pair by ¢.
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For example

(¢, 1)[a7]|111 >, a6]110 >, a5|101 >, 4100 >, 03]011 >, 2|010 >, @;1]001 >, @]000 >] =

a7cos /2 — assin¢/2
0 COS /2 — ay sin ¢/2
as5cos@/2 + arsing/2
a4 cos /2 + ag sin ¢/2
Q308 ¢/2 — oy sin¢/2
QoS /2 — g sin ¢/2
a1 cos9/2 + azsin /2
Qo cos /2 + azsing/2

In general a is a complex number. The unitary transform matrix for

r(¢,J) is

cos ¢/2 sin¢/2
—sin¢/2 cos ¢/2

The gate symbol for rotate r(¢,J) is

J-[¢]-.

One specialization of the Rotate operator is b(J) = r(7 /2, J). Because of
its role in the QFFT we will name it “Butterfly” in analogy to the butterfly

operation of the FFT. Coppersmith [8] calls this P;. Its symbol is:

7 -[772)- -
It has the unitary transform matrix:

I 1/V2 1/V2
~1/v2 1/4/2
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3.3.4 Conditional-Complex Rotation

All ordinary logical operations can be composed from Rotate and Controlled-

Not operators. However Coppersmith’s Fast Fourier Transform [8] QFFT on
qubits requires a special operation t(J,K) that is applied to a set of L qubits.
Qubits J and K are caused to interact in such a manner to rotate the ampli-
tudes that correspond to a state with a one in both positions J and K. The
rotation factor is a power of a primitive root of unity w=exp(27i/N) where

N = 2L, Let m = 2L-1-K+J_ The rotation factor is:
w™mod 2mz.

For a 3-ion example, let L =3, J = 0 and K = 1. Then

w2 — ez7r/2 )

Therefore starting from our usual state, the resulting state is:

a7.€?|111 >
a6|110 >
a5|101 >
Cl4|100 >
as.€7/2011 >
a2|010 >
01'001 >
0p|000 >

We will call this two-bit rotation operator “T'widdle” in honor of its applica-
tion in the QFFT. This operator is the Q;k transformation of Coppersmith

[8]. It has the unitary transformation matrix
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1 0 0 0
0 1 0 0
0 0 w™ 0
0 0 1 w™

and has the symbol

| T
K L

3.3.5 Measure

The operation measure(k) measures the state of qubit (k) of the system.
This operation generally happens after all other operations are complete and
will provide a read-out of one likely answer if several (or many) are possible.

While we simulate the operations with a list of possible states
S = [an_l ...... ao],

when a measurement of S is made, the result is a state |a(k) > that will
appear with probability |ak|2. Such a measurement of the k qubit will in
general change the chances of a given observation on any of the remaining

qubits with which it is entangled.

59



3.3.6 Set of Operators

We list our selection of primitive operators as discussed above:

1)
2)
3)
4)
5)
6)
7)

3.4 Basic Circuits

measure (K)
clear (K)
x(L,J)
x(K,L,J)
r(¢,J)

b(J)

t(J,K)

3.4.1 Full Adder

: Measure

: Clear

: Controlled-Not

: Controlled-Controlled-Not
: Rotate

: Butterfly

: Twiddle

To perform arithmetic, we need a simple addition operator. Ideally we

would like to not consume any scratch space in summing numbers. Thus the

truth table for an ideal, full adder would be:

INPUT OUTPUT
A B CGl|A S G
0 0 00 0 O
0 0 1{0 1 O
01 0|0 1 O
0 1 1[0 0 1
1 0 031 1 O
1 0 1|1 0 1
11 01 0 1
1 1 11 1 1




This truth table is not reversible, that is, given any output state there is
not necessarily a unique input state. Therefore a full adder must consume
scratch space. In order to find the most efficient full adder, a computer de-
sign program was written to search for it, given one bit of scratch space. It
discovered an improvement over the full adder given by Feynman [7). The

improved full adder is shown below.

S |

B
c SUM
z CARRY

This circuit is fully reversible but does, as it must, consume one scratch

(zero) bit. It is represented as

fa(A,B,C,2) = z(B,C) 0 2(B,C,Z) 0 z(A,C) 0 z(A, C, Z).

3.4.2 Multi-bit Full Adder

Multi-bit full adders for M bits are composed of M full adders in the
classical manner (ripple-carry.)

M-1
add (A,B,S)= O fa(a;,bj,55,5541)
j=0
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The symbol for this adder is:

add

0 =—— = S=A+B

3.4.3 Multiplexor and Related Circuits

The design program also discovered a particularly good implementation
of a multiplexor (mx). Previously the best multiplexor was the use of the
more costly Fredkin gate (see below). The function is to select A or B

depending upon C. The truth table for the multiplexor is:

INPUT OUTPUT

A B C|IA B C

6 0 010 0 o

0 0 110 0 1

0 1 01 1 O

0 1 111 0 1

1 0 0|1 0 0

1 0 111 1 1

1 1 010 1 0O

1 1 110 1 1

The circuit is

A A
B B'
C C
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A multibit multiplexor is:

L-1
mz(A,B,c)= O mx(a;,bj,c).
J=0

Note that it does not consume any scratch space.

Sometimes qubit values must be moved. This can be accomplished with

e W

a switch module:

with the symbol

A useful specialization of the multiplexor occurs when both of the inputs are

classical (non-quantum) but the control is a quantum variable.

ci ct @ c2
c2 M

Y
Because C, C, can be precomputed, this becomes:

ct @ c2

c2 M
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This will be very useful later.

A Fredkin gate can interchange A & B depending upon C:
f(A,B,C)=z(B,A) o z(A,C,B) o z(B, A).

It has truth table

INPUT OUTPUT
A B C|A B (g
0 0 0(0 0 o
0 0 1{/]0 0 1
0 1 010 1 O
01 11 0 1
1 0 01 0 O
1 0 1({0 1 1
I 1. 0y1 1 0
1 1 11 1 1

and the circuit:

C
A multi-bit Fredkin gate is

L-1
f(A,B,C,) = o) f(aj7bj’c)'
J=0

We will represent it with the symbol:
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3.4.4 Multiplier

A one-bit wide multiplier circuit is simply an AND gate which is just the
Controlled-Controlled Not with a zero input on P: mult (A,B,P) = x(A,B,P).
To produce larger bit-width multipliers we proceed in several directions. We

will first show a 1 by L bit multiplier:
a0 s 4

al

dL1

R o

0 = Pus
This has the formula
L-1
mult (AbP)= O x(a;,b,p;).
j=0

A two bit by two bit multiplier, designed by hand is:

AD 9 —0— A0

Al —@— A1
B0 —@— I B0

B1

o
f
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The truth table for this multiplier is

A, A, B, B|P, P, P, P;
6o 0 0 0j0 0 0 O
6o 0 0 110 0 0 O
o 0 1 0)]J0 O O O
0 0 1 110 0 0 O
0o 1 0 00 O 0 O
0 1 0 10 0 0 1
0o 1.1 00 O 1 O
6 1 1 1|0 0 1 1
1 0 0 O0}J0 0 0 O
1 0 0 110 0 1 O
1 0 1 0]J]0 1 0 O
1 0 1 140 1 1 O
1 1 0 O0f0 O O O
1 1 0 140 0 1 1
1 1 1 0}J0 1 1 O
1 1 1 11 0 0 1

3.4.5 Subtractor

A Subtraction consists of one’s complementing the subtrahend and adding
it, one and the addend. The one is conveniently added by asserting one on
the carry-in signal so. First we define x(a;), as shorthand for x(1,a;), the 1
being a classical bit. Then we define

L-1
X(A)= 0 z(ay)
=0

where L is the size of A. Subtraction is now:

sub(A, B, D) = X(A) o add(A, B, D) o z(d,) o X(A)
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where it is assumed D is initially set to zero. A symbol for subtraction is

sub

o
Il
|
|
I
o
1l
o
>

3.4.6 Adder for Recovering Scratch Space

Qubits are precious. A very powerful and general technique for recover-
ing qubits is given in a paper by Beckman, et al. [10]. It employs the reverse
of the inverse of the function to recover qubits. For adders the inverse is

subtraction. The symbol for a reversed subtractor is:

A —— —

B

subr

D=B-A =—p— == 0

Now placing this after an adder realizes the desired circuit in which B dis-

appears
A =t A A —— = A
B / S=A+B B == == A+B
add subr plus
0 =— —— — = 0 0 =—/— = 0
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The formula for this adder is then
plus (4, B, S) = subr (4, S, B) 0 add(A4, B, S)
where subr is just the reverse of sub:

subr(A, B, D) = z(A) o z(d,) 0 add(4, B, D) o z(A).

Also we note that the reverse of plus is just minus, a subtractor that

recovers scratch space.

3.4.7 Modulo Adder

To add two numbers A and B modulo N first add the numbers, then
determine if the sum equals or exceeds N by subtracting N from the sum and
checking the sign bit. This sign-bit (select) is then used to choose the proper
value A+B or A+B-N. Next scratch space is recovered using the reversed-

inverse technique described above. The circuit to do this is:

L
I
N

plus sub sub subr

A+B

|
I

®-
I

®_
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The symbol for madd is:

N —=— —3
A A
B A+BmodN
bL 0
madd
V4 0
2L 0

The formula to describe the modulo adder is:
madd(A4, B, br, Z, z) = subr(A, B, Z|by) o z(br, z1) o sub(A, B, Z|br)

o a/sr(zL, N, B|BL,Z) o x(z1) o f(B, Z,z1) 0 z(zL) o sub(N, B|by, Z|z1) o plus(A, B, Z|br).

The symbol “|” represents catenation of qubits. Thus Zlzp = z, 21 ..
zr. Note that the most significant bit (msb) originally associated with A+B
is arbitrarily associated with the value opposite to A+B mod N. This is

permissible because addition is symmetric.

A very clever method given by Beckman, et. al. [10] was used to perform
the final return to zero of the select line z;. This was to compare A+B mod

N to A, both readily available, and employ the result to clear z;.

The module a/sr was introduced here. It is just the reverse of add or
subtract of the classical constant N in order to clear the unused result of the
selection. zy (sel) is the select line that controls this. The adder is special
only in that either +N or -N is added to B, as selected by sel, and the N bits
are classical. While the circuit shows a three input gate, in reality, since it
is connected to a classical bit (N), if this bit is one, the corresponding two

input operation x(sel, Zg, Zr41) will be issued. If N, the classical bit, is zero,
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no operation at all will be issued. The bit slice is:

1 —@ 7

+nk ﬂ 7
-nk ?

e e

bk

k =
zk+ 1

The formula for this function is:

a/s(sel, +ng|—ng, be, 2k, 2i11) = (b, 2) 0 (b, 2k, 2k41) 0 (1, sel) o z(—ny, sel, z) o

x(—ny, sel, zk, k1) 0 (1, sel) o T(4+ny, sel, 2k) 0 T(+nyg, sel, zk, Zky1).
Now the a/sr module for L-bits is just the straight reverse of this bit slice

arrayed in reverse order:

)
a/sr(sel, N,B,Z)= O a/sr(sel, +ng| — n, be, 2k, 2e—1)-
k=1L

The symbol for this circuit is shown above.

3.4.8 Modulo Multiplier

The general method of multiplying two L bit numbers A and B modulo N
is to select each bit of B, and only if it is one, multiply A by the corresponding
power of two, then reduce it module N and modulo add it to a growing sum.
This essentially as it is usually done with pencil and paper. For our special

purpose that follows, we need a simpler, but special modulo multiplier that
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multiplies a quantum variable P, by a conditioned classical constant X to
produce Pry1=XP,. We will also need to recover scratch bits by use of the

reverse-inverse technique.

Our purpose for developing all these circuits is to implement the Shor
quantum factoring algorithm. This will require a number of variations of the
general circuits that are specialized for the algorithm, primarily to reduce to
a minimum the number of required qubits. We now will develop a circuit to

implement Shors algorithm.

3.5 A Circuit for Shor’s Algorithm

Ever since Feynman (7] suggested the possibility of quantum computing,
there has been a search for an important task for it to solve. Shor [11] has
found such a task, the only one to date, the factoring of large numbers. We

propose to show a complete circuit of Shor’s algorithm.

The task is given N, find p such that p divides N. The method of solution

is to find the period r of a function F(A) where
F(A) = X*mod N

and X is relatively prime to N. The algorithm consists of a quantum calcu-
lation of F(A), followed by a FFT of A and a search for a “frequency peak”
in the spectrum of A via repeated trials. Two circuits are therefore required:
one for F(A) and one for FFT(A). We will derive, from the circuit modules

developed above, circuits for each.
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3.5.1 Exponentiation

We want a circuit to calculate F(A) = X“ mod N, where X is to be chosen
to be relatively prime to N. The first step is to write a binary expansion of
A

A=0a2" 4+ a;2' + as2?..... + ax2".... .

Then

0 1 2 k
F(A) — Xa02 +a12" +a2°+...ax2

F(A) = (X)* o (X?mod N)* o (X! mod N)

o...(Xkaod N)%... mod N.
Because all the powers of X mod N can be precomputed this reduces to
F(A)=X§%0 X{* o ... Xpk....

The term Xy is easily calculated as ay is either zero or one. Thus the term is
either one or X;. However we will not actually perform exponentiation this

way as we will combine it with multiplication (below.)
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3.5.2 Modulo Multiplication

We desire to multiply a value P by X% mod N:

L-1
XkPk = Z ijjXZk mod N
=0
L_l . .
= Y pi(ax?’ X mod N + 62’ mod N) mod N
7=0
L-1
= > pilaXe; + aiYay)
=0
where X; = 27X, mod N and Y;; = 29 mod N. To calculate this we will
employ a variable S initially set to zero to which we successively add the X

and Y terms. Each X and Y are precomputed classical variables.
S=S+pA@AX+aAry).

Except for the first time, each additional X and Y addition will require mod-
ular reduction so we adopt the madd module developed above. The plus
module inside madd must be slightly modified to use X+Y as input but
since one of either X or Y must be zero, this is not a problem. A bit slice of

the module ema that corresponds to that of add in plus is:

x ——@

y L
a @

p >—¢ 9 Y
s

2k

zk+1
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It has a formula:
€ma (l‘,y,a,p,S,Zj, zj+1) = CE(G,) o x(y,a,p, Zj) o x(y) a,p, zj’zj-f-l) o IL‘(CL) o

:B(:I:,a,p, z]') Y .'z:(:c,a,p, Zj, zj+1) o x(87 Zj) o .’L'(S, 255 Zj+1)-

Therefore the formula for emod is
L-1
emad(X,Y,a,p,S,Z|z1)= O emalz;,y;,a,p,85,2j,2j+1)-
i=0
This circuit “emad” replaces the add module inside the plus module.
The second half of a plus module is the subr module. We need to subtract
X and Y as conditioned by a; just as we did above for addition. The result
will be new modules ‘emsb” and its reverse ‘emsr” to replace these modules

in the plus and madd modules.

The function of emsb is to calculate
S=8+planX+aAY +1)

The bit-slice to do this is the same as for ema except for the negation of X

anle Y. Therefore

L-1
emsb(X,Y,a,p,S,Z|z1)= O ema(z;,v;,a,D,58;,2;,2541) 0 Z(20)-
j=0
and
0
emsr(X, Yaa')p, S,ZIZL) =x(zo) o O emar(xj’yj’a7p’sjazj7zj+l)'
j=L-1

Now we can define mplus:

mplus(X, Y,X,}_’,a,p,B|bL, Z)=
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emst(X,Y,a,p, Z|b;, B) 0 emad(X,Y,a,p, B, Z|by).

At this point we drop X,Y,X,Y,N from our notation as they are classical
variables that do not further interact with the calculation. Thus we just

write mplus(a,p,B|b.,Z), etc.

We now have all the modules we need to implement the equivalent of
madd discussed above. We will call the new addition module ‘maddp’. It
will include all of the multiplication and exponentiation circuits discussed
above. Any classical input to a gate such as X will not be issued when X is
zero and the smaller operation (with X deleted) will be issued when X is one.
Finally it can be seen that three-input gates are employed. These can be
either direct implementations, or by the use of one extra qubit, be realized

by three two-input gates in the obvious manner.

maddp(a, y B; ZL) = emsr(a, Y S7 ZIZL) o x(bln ZL) o eme(aap) S> ZIZL) o
a/sr(z, N, Blbr, Z) 0 z(z) o f(B, Z,21) 0 z(21) 0

sub(N, Blby, Z|z1) o mplus(a, p, Blby, Z).

A full multiplier can now be formed from L maddp modules:

NX,Y

A A
PK == = Pk

B =t = XPk+tmod N
bt —— 44— 0
maddp maddp maddp maddp
ya—— = 0
2L — 0
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The formula is:

L-1
memlt(A, P, Blbr, Z|z,) = O maddp(ay,p;,B,bL, Z, z1).
J=0
A symbol for memlt is:
N XY —

>
Il
I
Il

>

PK === = Pk

BlbL. =—og— == XPk+1 mod N
memit

2|zt —— === 0

We must now clear Px. Again we employ the ‘reverse-inverse’ idea. For the
inverse we need division so we can divide XP by X to yield P. Then we reverse

this so that P is cleared just as we did for addition as described above.

For Shor’s algorithm, X is relatively prime to N. This means only a
selected subset of X’s will ever be used and each of these X’s has an inverse
mod N. For N=15 valid X’s are X = {1,2,4,7,8,11,13,14}. X=1 would not be
chosen however as it would not produce a factorization. All X’s except the
inverse pairs {2,8} and {7,13} are self inverses. This means that the reverse
division module is just a reversed multiplication by X~!. Consider forward

multiplication by X~! (X~! is precalculated).

76




X-‘l X'1 .

XP XP

mult

X X X!
P XP
P
mult
[0 —— — —— —

multr

XpP

The following is the symbol for this multiplier circuit that clears P, but em-

ploys memlt as the basic multiplier.

A —— = A
Pk = PK+1
times
BibL = ¢
ZlzL == = 0
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3.5.3 Calculation of F(A)

The times modules can now be combined to calculate F(A).

A — L
] — A
pmult PK
0 — || | L
times times times F(A)
BilbL
| —] — — 0
ZjzL L] - — o

This is the circuit to calculate F(A) and has the symbol

A =— == A
0 == == Pkst
F(A)
0 =—— = 0
0 =— == 0
and has the formula
L-1
f(A7P,BIbL,ZIzL) = O timeS(Ak)Pk)BlbL,Z'zL) o meIt(Ao,Po)
k=1
where
L-1
pmult(A,P)= O pmt(zj, a;j, pj)
k=1
and

pmt(z, a,p) = z(a) o z(a,p) o z(a) o z(z,a,p).
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Note that because classical variables are always available we do not show

them as arguments except when a specific classical value is defined.

3.5.4 Quantum FFT

The Quantum FFT (QFFT) is a simple calculation in comparison to calcu-
lating F(A). Coppersmith [2] devised a very clever algorithm for the QFFT.
It uses the Twiddle and Butterfly modules defined above. Here is the QFFT

for four qubits.

Ao [ w2
Al 12 —J
Az 02 rl_lL
S [
A 2 [ (1

It is easy to see that for L qubits, the QFFT will require only L Butterfly
modules and L(L-1)/2 Twiddle modules.

3.5.5 Conditioning

Prior to starting, all qubits must be cleared. This is just 5L+3 clear
operations. Next, all the A bits are conditioned by rotating each of them

with a Butterfly operation. This will require 2L+1 operations.

79




3.5.6 Overall Operations

The steps to calculate Shors algorithm are then:

1) Clear all qubits

2) Condition the A qubits with Butterfly operations
3) Calculate F(A)

4) Calculate QFFT(A)

5) Measure A

3.6 Complexity

Both the space (qubits) and time (gates) complexity of the circuit are
easy to determine. The F(A) module requires the most space at 5L+4 qubits.
By following through all the modules, gates can be counted. If only up to
three bit gates are allowed, then the total gate count is about 14L + 1612 +

29213 gates and operations.

For factoring 15, L=4 so this implies about 24 qubits and 18,940 gates.
If four bit gates were to be allowed, these numbers would drop to about 23
qubits and 12,900 gates. It may also be possible to reduce qubits allocated
to A down to say six bits. This could mean that 20 qubits would suffice.

Gate count would drop to roughly 10,000.
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The gate counts given here are an upper bound because whenever a
classical constant bit is found to be zero, the classical computer will simply
not issue the corresponding operation. Also it may be possible to discover

more efficient implementations. The table below details the numbers of the

different types of gates for F(A) for this implementation.

Gate Degree | Number Required for F(A)
0 2L + 12L° + 48L°
1 L + 4L% + 4413
2 L + 56L3
3 4813
TOTAL 4L, + 16L* + 196L°
Gate Degree | Number Required for F(A)
0 2L + 1212 + 48L°
1 L+ 4L% + 4412
2 L + 200L3
TOTAL 4L, + 16L° + 29213

An interesting factoring would be for numbers of about 800 bits This would

require about 4000 qubits and 10*! gates!

3.7 General Scaling for F(a) Circuit

3.7.1 Shor’s Algorithm

In considering quantum computing, one encounters some delicate and

essential questions concerning trade-offs, in practice, between scratch space
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and ops (operations). The whole situation is a little vague and the terms are
not fully defined now — basically there is very little experience in program-

ming a quantum computer.

One should bear in mind however, that programming a general purpose
computer in any significant way depends on the existence of a large battery

of well defined, easily executed, moderately complex subroutines.

In the theroetical discussions of quantum computing, a great deal of
emphasis is laid on the back of the fact that every K x K unitary transfor-
mation is the product of at most ﬂ%’—ll unitary transformations which are
just rotations in two dimensional coordinate planes. As a mathematical ob-
servation, this is just a little more than gauss diagonalization of a symmetric

matrix, and an elementary proof is easily contrived.

One should remember that in quantum computing, the number K is

2800 in Shor’s algorithm),

going to be extraordinarily large (it is as large as
and the typical or generic unitary matrix is going to take at least K/2 2-
dimensional rotations as factors in aforementioned decomposition. This is
quite easy to see, since the product of L 2-D coordinate rotations will have
at least K — 2L ones on the diagonal; i.e. the product of L coordinate

rotations is the direct sum of a 2L dimensional unitary matrix with a K —2L

dimensional identity matrix.

Clearly, this is no way then to program the generic unitary transforma-

tion; the number of ops is daunting.
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Nor is this the decomponsition which actually occurs in some of the
computational procedures described in the literature, the Fourier Transform

being the prime example.

Let us note some other examples. A common task in quantum comput-
ing will probably be the generation of the uniform superposition of the states

la, f(a)), a = 0 to 2F — 1, from the uniform superposition of the states |a).
Shor’s algorithm depends on the detailed case f(a) = z%(mod n).

Even the simple case of copying a bit, say f(a) = ay, the first bit “a”, is
not readily executed as a product of 2-D rotation. In the Cirac-Zoller scheme
it is executed with one pair of laser pulses, even though it would appear to

require about 2%~! 2-D rotations.

Let us look in a little more detail at what the compution of '\}—6' > la, f(a))
requires. One might imagine starting with two registers, one for “a”, the
other, initially filled with all zeros, is for ultimate load by f(a); along the
way of the computation it is filled with g(a), a function computed on the way
to computing our final f(a). At some point along the computational way, we
may have to multiply two large numbers, because we need a tensor product

of state vectors, or because of the way we have arranged the computations.

We cannot carry out the computation in the two registers already de-
scribed, we must make work space for the product elsewhere, and we must
do it reversibly because we are “quantum computing”. If we generate trash

in our computation on the side we can eat it up by the Bennett/Feynman
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scheme, but we do pay the price of at least doubling ops and making many
essential scratch lines. If somewhat later we carry out an additional compu-
tation which uses the product routine just devised, it will fold in the doubled
ops already created into the doubling of ops of its own by the outer compu-

tation.

All of this discussion simply points out that without very careful control
of subroutines, the number of ops in a subroutine is going to repeatedly
double, and the side workspace (trash) required will also grow to unpleasant

magnitude.

We saw a clear illustration of the above in the development of the JA-
SON program for the computation of Shor’s function z* (mod n) [Section
3.5]. More generally, the following are outstanding questions that need to
be more fully explained and quantified. What are the building blocks for
efficient quantum computing subroutines, and what are the unitary transfor-
mations which can be synthesized from said subroutines? In the synthesis,

what is the trade-off between scratch space and ops?
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4 IMPACT OF DISSIPATION

Thus far we have assumed an ideal setting in which the computational
basis states and superpositions thereof are unperturbed by their surround-
ings. Of course in practice, no physical system exits in absolute isolation from
its environment. The interaction of the qubits of a quantum register with the
degrees of freedom in the external environment causes decay of the state of
the qubits, with both energy loss and decay of coherence. For example, if a
qubit is an elementary spin, then interactions with stochastic external fields
(arising from perhaps thermally fluctuating spins in the host medium) can
cause a spin in an external field to flip (energy decay), but can as well cause
the angular orientation of the spin around the axis of the field to become

indeterminate (phase decay).

As should be apparent, for our application the time scale of principal
concern is that for the decay of quémtum coherence for the overall wavefunc-
tion of the state of the quantum computer.[29] Unfortunately, independent,
of a specific model system, it is not possible to make quantitative statements
which characterize the diverse impacts of dissipation on a complex quan-
tum system. Moreover, various possible quantum states will in general be
affected quite differently by dissipation. However, we can draw from work
in the quantum theory of measurement over the past 15 years to make some
simple estimates about the likely role of dissipation and the consequent re-

quirements for the physical implementation of quantum computation.[30)

85




Towards this end, we first assume independent decay by the various
qubits into individual uncorrelated reservoirs (which we take to be in their
vacuum states), with the time for the decay of phase coherence for a single
qubit denoted by 7. Now, a superposition state formed from J qubits will not
decay uniformly at this same rate 1/7. Instead the off-diagonal elements of
the density matrix for the previously perfectly coherent quantum computer
will decay with time constant set by the global separation of its compo-
nents in the computational eigenbasis.[31, 32] If we take as the characteristic
“distance” between components in a complex superposition state to be the
Hamming distance, then an order of magnitude estimate for this distance is
J itself, with the time scale for decay then given roughly by 7/J. Stated more
physically, superposition states which exhibit “macroscopic” characteristics
(such as a coherent superposition of 1,000 spins up plus 1,000 spins down)
are incredibly sensitive to dissipation. In the case of a quantum computer,
an estimate for the time 7, for decay (the decoherence time) of an entangled

state of J qubits is 7, ~ 7/J << 7 for J >> 1.

Now clearly for the operation of the quantum computer we will require
that this decoherence time 7, is small as compared to the total time for the
quantum computation. Given a basic clock time T, for an elementary gate
involving the coherent (reversible) interaction of two qubits as discussed in
Section 6, then the time for the computation is of order M T, with M as
the total number of operations (or “ops” as estimated here by the number
of primitive gates). The requirement that 7, >> M T, then leads to the

following inequality for the ratio of decay time 7 for an individual qubit to
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the clock time per step T,
T[T, >> JM. (4-1)

To understand the scaling that this inequality implies, note that {r,7,} and
{J, M} will in general be functions of the size of the problem L, where L is
the number qubits in the input data register. Without reference to a specific
physical system for implementation,[33] we take {7,T,} to be constant with
respect to L and consider only the implications of the complexity of the

quantum network as described in the preceding Section 3.

For the first case, consider the quantum FFT circuit, which we recall is
the role model for efficiency. Here the number of ops M scales as L?, while
the number of “scratch” qubits is 0, so that J = L. Hence, Equation (4-1)
implies that

7/T, >> L3 ~ 10° (4-2)

for the quantum factoring problem with a 200 digit number (roughly 800
bits). Although this is a daunting number with respect to current laboratory
demonstrations, one might well be bold enough to state “Nonetheless, let’s
get on with it!” However, the second case of the quantum circuit for F(A)
provides a discouraging deflation of such enthusiasm. Recall that now the
number of ops M scales as L3, while the number of “scratch” qubits J ~ L.

Hence, Equation (4-1) implies that
7/T, >> L* ~ 10'2, (4-3)

where the estimate is again for the quantum factoring problem with a 200
digit number. This number is beyond any reasonable assessment of projected

physical capabilities well into the next century.
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As emphasized in Section 3, there is no guarantee that the JASON
circuit for computing F(A) is optimum in minimizing either the number of
elementary operations or the size of the scratch space. However, our circuit
together with recent work at Caltech by Professor J. Preskill {10] and at
Oxford by Barenco et al. [11] are the only explicit such networks of which
we are aware, and it is fair to say that they are certainly not the most
inefficient circuits that could be designed. Our quantum circuit together with
the above estimates do emphatically make the point of the critical need both
for better quantitative analyses of the role of dissipation and for excruciating
care in the actual design of quantum circuits to minimize both ops and scratch
space. Estimates of computational complexity which give the scaling (e.g.,
polynomial of order k) are an important first step, but cannot be taken as
a substitute for explicit, quantitative results. For example, for our quantum
circuit the numerical prefactors in the polynomial expressions for M ~ L3
and J ~ L increase the estimate of 7/T, by almost 1,000 fold! The fact
that quantum bits of information are such a fragile resource underscores
the need for explicit constructions if reliable assessments of feasibility of

implementation are to be made.

We should stress that although the above estimates represent a reason-
able first attempt to assess the role of dissipation, they are based on simple
models that describe the decay of coherent superpositions for states of an
otherwise isolated “system” into an external “environment”. These results
should be taken as qualitative indicators of the nontrivial difficulties pre-
sented by dissipation; however, they should not be viewed as setting univer-

sal constraints for quantum computation. For the most part the community
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that has considered the role of dissipation (with results as sketched above)
has relied on a Master Equation formalism for the density matrix of the sys-
tem for which the degrees of freedom of the surrounding environment are
eliminated and no information about system decay is recorded. By contrast,
in some physical settings it is possible to observe certain decay channels of
the system (e.g., photoelectric detection of escaping photons) and thereby
to monitor continuously the system’s evolution[25, 30, 34]. In this case, the
results of the Master Equation formalism are not necessarily applicable to
subensembles chosen relative to some criteria such as the absence of emitted
quanta from the system. Furthermore, it seems reasonable that one should
consider not only “freely” decaying systems, but should as well investigate
the nature of decoherence for driven quantum systems (“quantum food for

quantum dynamics”).

Of particular note in this regard are recent developments in the area
of Quantum Optics, with a premier example being the work of the group of
P. Zoller and colleagues at the University of Innsbruck in Austria. As we
will discuss in more detail in Section 6, Zoller’s group has made two note-
worthy proposals for the physical implementation of quantum computation,
both of which involve linear strings of trapped ions (or atoms) which are
“wired” together on the one hand by a phonon mode [9] and on the other
hand by a photon mode.[25] While both of these suggestions may well be
realizable in the laboratory (at least with modest numbers of qubits), per-
haps their most important near-term impact is that they provide plausible
model systems for realistic analyses of quantum computation, including the

impact of dissipation and possibilities for various error correction schemes.
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Indeed, we feel that it is very important to go beyond the situation of “oracle”
pronouncements of the evils of decoherence and to focus instead on quantita-
tive analyses of suitable model systems, where appropriate systems are those
for which there exist reasonable microscopic understandings of the system-
reservoir interaction in both experimental and theoretical terms. Such anal-
yses can provide an essential bridge between formal quantum algorithms and

nascent experimental capabilities.
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5 ERROR CORRECTION

Diverse imperfections in the components of classical computers could
have devastating impact were it not for the mitigating effects of various error
correcting schemes. In broad brush, such schemes have in common a “ma-
jority” voting philosophy, where the effect of errors with probability p < 1/2
are exponentially suppressed with repeated trials (or parallel processing). If
quantum computation is to be implemented successfully, it seems reasonable
to assume that analogous error correcting protocols must be developed to deal
with the adverse consequences of diverse quantum imperfections, including
the fidelity with which quantum transformations might be accomplished as
well as (and perhaps much more importantly) the loss of coherence due to

interactions with the environment.

At first sight, it might seem a fool’s errand to suppose that a quan-
tum calculation could be “corrected” in route, since any measurement of
a quantum system necessarily perturbs the system. Although the business
of quantum error correction is a nascent enterprise with no firm “software
release dates”, there are some preliminary analyses that offer faint rays of
hope. [36, 37] The common theme of the research thus far is to operate
P >> 1 quantum computers in “parallel”. For a “correct” calculation free
from error, the overall wavefunction for the P computers evolves exclusively
in a symmetric subspace of the total Hilbert space, while “errors” in any
one of the computers causes the overall state to develop components outside

of the symmetric subspace. Since the ratio of “volumes” of symmetric to
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total spaces is exponentially small in P, any such error creates a new com-
ponent of the overall wavefunction that is approximately orthogonal to the
symmetric subspace. One then attempts to devise measurement strategies
that squelch these orthogonal components by active intervention in the total
Hilbert space, thus constraining the quantum evolution (i.e., the “calcula-
tion” with P computers) to remain in the symmetric subspace without actu-
ally having disturbed this realm. While current research has identified this
approach as a promising avenue for error correction in the quantum domain,
it remains to be seen whether or not robust algorithms can be developed that

can also be physically implemented.

Apart from work to find general formalisms for quantum error correc-
tion, it is also important to look to specific model systems both to assess the
actual (as opposed to “generic”) impact of imperfections as well as to test
candidate correction protocols. In this regard, we would once again point
to the work of P. Zoller and colleagues as exemplary. Particularly in their
work with atoms interacting via photons in a cavity, [25] one has a detailed
microscopic understanding of both the reversible, coherent evolution of the
qubits (internal atomic states coupled via a quantized cavity field) as well
as of dissipation by way of atomic spontaneous emission and cavity decay.
Since the cavity dissipative channel can in principle be monitored with high
efficiency, the information thus gleaned can be exploited for error correction,

with some counterintuitive results emerging from Zoller’s analysis.

Quite recently two other very promising developments have occured re-

lated to the possibility of actively correcting errors at the level of individual
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qubits. Mabuchi and Zoller [34] have identified subspaces which are “in-
variant” with respect to quantum jumps and for which state decay can be
restored by continuously monitoring decay channels. Their scheme involves
a redundant encoding of information in multiple qubits. A more general
scheme which does not require the detection of decay events in the external

environment has been presented by Shor [39].
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6 ASSESSMENT OF POSSIBLE PHYSICAL
REALIZATIONS

In considering the physical implementation of primitive “gates” for quan-
tum logic, there are two times scales of particular relevance. The first is set
by the interaction energy AE = hy between a pair of qubits, with T, = 1/x
being the time required to effect a coherent change of state of the qubits due
to their mutual interaction. Clearly the “clock” cycle for quantum computa-
tion can proceed no faster than 7,. The second time scale is that set by the
grim reaper of dissipation, with I' as the damping rate for the coherence of

any one qubit and 7 = 1/I" as the single qubit decay time.

For reversible, coherent computation, we require that
T/T, >> 1 (6-1)

and hence that

x/T'>> 1. (6-2)

Since m = (T'/x)? has the physical significance of a critical number of quanta

in many settings, Equation (6-2) is equivalent to the requirement that

which is to say that a single quanta (e.g., a phonon, photon, elementary
charge, ...) must be capable of significantly modifying the interaction between
qubits. Condition (6-3) goes by a variety of pseudonyms in different fields of
physics; here, we shall adopt the terminology of optical physics with Equation

(6-3) being the condition for strong coupling for interactions between qubits.
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Although these are quite general qualitative considerations, we might
attempt to better understand the order of magnitude implied by the above
inequalities by recalling our discussion of dissipation in Section 4. In combi-
nation with the explicit JASON quantum circuits relevant to Shor’s factoring

algorithm, we arrived a@ the estimate (Equation (4-1))
/T, >> JM,
which in the current setting implies that
x/T >> JM. (6-4)

For the case of the quantum FFT circuit, the number of ops M scales as L2,
while the number of “scratch” qubits is 0, so that J ~ L. Hence, Equation
(6-4) implies that

x/T >> L* ~ 10° (6-5)

for the quantum factoring problem with a 200 digit number (roughly L =
800 bits). As we shall see in the sections that follow, this is a number well
beyond current laboratory capabilities. The quantum circuit for F(A) is even
more challenging, since in this case the number of ops M scales as L, while

the number of “scratch” qubits J ~ L2. Hence, Equation (6-5) implies that
x/T >> L* ~ 10" (6-6)

where the estimate is again for the quantum factoring problem with a 200
digit number (L = 800 bits). This number is so large as to be ridiculous into
the foreseeable future and would seem to preclude the physical implemen-
tation of quantum computation for problems with the above stated scaling

properties (which apparently includes the quantum algorithms described by
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Shor, at least via the JASON quantum circuits). Clearly it is imperative to
find more “efficient” algorithms which avoid the simple scaling that arises
from a demand for global coherence throughout the entire Hilbert space for
the total duration of the computation (as for example by suitable division
of the computation into restricted domains of the Hilbert space or by error

correction protocols).

In the alternative, one should perhaps broaden the perspective beyond
the view of quantum computation as supplanting conventional large scale
computation with a concomitant requirement for large numbers of qubits
(> 10%) and should consider the field of quantum information more globally.
More specifically, there appear to be interesting problems in the domain
of quantum communication which require a much more modest scale for the
number of globally coherent qubits.[38] In addition, it might well be the case
that there could be non-negligible benefits to be gleaned from the exploita-
tion of quantum coherence in the setting of “conventional” computation. As
the physical scale of components continues to progress in the realm of nanos-
tructures, one should be alert to opportunities associated with quantum state

entanglement on a modest scale of a few qubits.

Against this backdrop of the daunting physical requirements implicit
in Shor’s algorithms and of considerable uncertainty as to the specific re-
quirements for other as yet unnamed opportunities, we next turn to consider
specific physical systems as candidates for the components of quantum logic
gates.[8] Independent of the current excitement over the quantum computer,

there has been a clear trend over more than a decade in several areas of
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physics to move into the domain of strong coupling as expressed by Equation
(6-3). This work represents an intellectual as well as a technical frontier,

with potential import well beyond the realm of the quantum computer.

As will become clear in the following sections, no physical system has
demonstrated performance sufficient to the task of the implementation on
a nontrivial scale of a quantum algorithm such as Shor’s. However, mod-
est steps have been taken with two recent demonstrations of conditional
logic at the single quantum level. In one experiment a quantum phase gate
has been investigated within the setting of cavity quantum electrodynamics
(COED).[23] Here the individual qubits are optical photons, with the in-
ternal state specified by polarization and with interactions between qubits
proceeding via strong coupling to an atom in an optical cavity. In the other
experiment, a Controlled-Not gate has been implemented for a single trapped
ion.[40] Here, the qubits are the ion with two internal states and phonons
associated with the quantized oscillation of the ion in a Paul RF trap. One
should stress that in both cases no explicit demonstration of quantum-state
entanglement has been made. Hence although these experiments explore con-
ditional dynamics at the level of single quanta (strong coupling as in Equation
(6-3)), they come with no warranty that the interactions are sufficient for the

actual implementation of quantum logic with entangled states.

In the following three sections, we review some promising physical sys-
tems, including the two mentioned above as well as three possible condensed
matter systems. This should not be viewed as an exhaustive listing (es-

pecially given the rate at which new possibilities have been theoretically
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suggested in the past year), but rather as indicative of some of the issues to

be considered when evaluating candidate systems.

6.1 Condensed Matter Systems

6.1.1 Introduction

The construction of solid state quantum computers is appealing for
many reasons — essentially the same reasons we use solid state computers
today: they are compact, rugged, and reliable. Perhaps most importantly,
solid state technology has the potential to fabricate complex quantum circuits
with desired couplings using extensions of advanced processing techniques de-
veloped for the semiconductor industry. At present, atoms in traps are the
leading contenders for the experimental realization of a quantum computer,
because the high degee of isolation of these atoms from their environment
preserves the coherence of quantum states for relatively long times. Q-bits of
information in solid state quantum computers will likely be represented by
collective states of many particles in close proximity with their environment,
and the challenge will be to preserve the coherence of the g-bit against the

internal collective modes and external perturbations.
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Figure 6-1 illustrates a hypothetical spin system which serves to illus-
trate the challenges facing solid state quantum computers. The circle rep-
resents a very small spherical ferromagnetic particle containing N aligned
spins. Small particles of this type are the basis of super-paramagnetic ma-
terials, so-called because the total spin of the particle can rotate freely in
response to an applied magnetic field. Large ferromagnetic spheres are used
as microwave resonators. Suppose that the quantum variable of interest is
the z-component m,h of the total spin along an externally applied magnetic
field. The total spin J represents a collective state of the N individual spins
j aligned by their ferromagnetic interaction. For use in a quantum computer
this collective state should be isolated both from internal excitations and
from external interference, because either can destroy quantum coherence of

the many body state.

Internal excitations exist for any quantum system composed of more
than one particle. Ideally, one would like a spectrum having no excitations
with energy below that of the g-bit collective state, so that break up into
internal excitations is energetically forbidden. This is trivially true for nu-
clear excitations, for example. However, solid state systems composed of
more than one atom possess excitations associated with the internal mo-
tion of the atoms, spin, and charge. The lowest energy internal excitations
for the super-paramagnetic particle example illustrated in Figure 6-1(a) are
spin waves consisting of continuous rotations of the local magnetization. For
large systems the spin wave spectrum is essentially continuous and extends
to very small energies. However, for small superparamagnetic particles the

lowest energy spin wave excitation is finite, determined by the phase velocity
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and the size of the particle. Both the spectrum of internal excitations and the
strength of their coupling to a collective quantum variable determines how
fast coherence is destroyed. Although solid state systems generally possess
less symmetry than isolated atoms, constraints such as energy and momen-
tum conservation still apply and play a large role in determining the relax-
ation rate. For example, in a perfect ferromagnetic sphere, the total spin

does not couple well to spin waves even when they are energetically allowed.

External perturbations of the quantum states in a quantum computer
change their energy spectrum and cause a loss of coherence. For a discussion
of these issues in mesoscopic quantum systems see Altshuler et al. (1991)
[12] and Beenakker and van Houten (1991) [14]. Figure 6-1(b) schematically
illustrates the energy level diagram for the super-paramagnetic sphere in a
magnetic field, including perturbations due to external spins. For a fixed
configuration of external spin states, the energy levels of the entire system
consisting of sphere and external spins remains sharp, but each level of the
superparamagnetic sphere is shifted by an amount typically ~ §6FEc. The
pattern of energy level shifts is typically complex and depends sensitively
on the configuration of external spins. Performing an ensemble average over
external spin states leads to a statistical distribution of levels represented by
the level width in Figure 6-1(b). In order to avoid a dependence of the g-bit
on the state of external spins, the broadening due to the time of observation
Atops must be made larger than the interaction energy §FEex < i/Atops. It
is clear that external interactions must be minimized in order to provide an
observation time long enough to perform useful computation. This is difficult

at present in solid state systems, due to the low characteristic energies < 1eV
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and due to the close proximity of the quantum device to particles in its

environment.

Ideally the concept of temperature would not be relevant to quantum
computers, because they are assumed to be in well defined quantum states,
out of equilibrium with their environment. In reality of course, temperature
is a major consideration. Often it is useful to separate the internal ther-
malization of quantum states of the device and external thermalization to
the environment. The internal thermalization rate is determined by the re-
laxation rate of the quantum variable via inelastic processes into unwanted
internal excitations as discussed above. For certain systems, the internal
thermalization rate can be made quite slow, either by arranging for the exci-
tations to be energetically forbidden, or by fully accounting for all accessible
internal states as for atoms. The external thermalization rate is determined
by inelastic processes due to coupling of the quantum system to its environ-
ment. A first step toward reducing this coupling is to make the energy level
spacing much greater than the ambient temperature, as for atoms in traps, so
thermal electromagnetic radiation rarely causes transitions. For solid state
systems this typically means placing the device inside an enclosure cooled
below room temperature. Other inelastic processes also contribute to ther-
malization and destroy coherence; for the hypothetical spin system above an
additional inelastic process would be flipping an external spin. Enumerat-
ing the important inelastic processes for a given system and evaluating their
relative strengths is a difficult problem subject to great uncertainty: some
inelastic processes are fundamental in nature and intrinsic to the system,

others such as impurities or structural imperfections differ with material and
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the manufacturing process, all are generally temperature dependent (see Al-

shuler et al. 1991, Beenakker and van Houten 1991) [12, 14].

Solid state quantum devices typically differ from isolated atoms in that
atoms are identical and possess a high degree of symmetry. The internal
excitations of atoms are the same from one atom to the next and they are
incorporated into the energy level spectrum, rather than being thought of as
unwanted internal modes. As a ‘consequence of the high degee of symmetry,
the level spacing of atoms is not uniform and one can select transitions of
the desired energy for use in a quantum computer, e.g. optical transitions
with energies much greater than room temperature. These advantages are
degraded to some extent as one couples many atoms together to form a
quantum computer, as in the Cirac and Zoller scheme discussed elsewhere in

this report.

By contrast, man-made solid state devices such as ferromagnetic parti-

cles, quantum dots, or superconducting quantum interference devices (SQUID’S)

typically consist of many atoms; the nominally identical copies of a given
device are neither precisely identical nor perfectly symmetric. The energy
of quantum transitions in solid state devices typically lie below the optical
range, and current solid state quantum devices generally require cooling. As
a consequence of disorder the level spacing of states in solid state quantum
devices is often approximately uniform, a defining characteristic of chaotic
quantum systems (see Altshuler et al. 1991, Gutzwiller 1991)[12] {17]. Be-
cause copies of a quantum device are not precisely the same, their character-

istics will differ. These disadvantages are offset by the geat advantage that
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solid state quantum devices and circuits can be designed and constructed in

custom designed configurations not found in nature.

6.1.2 Solid State Quantum Device Examples

Single electron logic and single flux quantum logic are advanced ap-
proaches to solid state computation which represent each logical bit by one
electron and by one magnetic flux quantum respectively (see Altshuler et al.
1991, Grabert and Devoret 1991, Tinkham 1995) [12] [16] [18]. Although
based on the quantization of charge and magnetic flux, both are classical in
the sense that bits of information are passed through the circuit as incoher-
ent classical particles. Single electron and single flux quantum logic provide
good starting points to evaluate possible extensions for use in a quantum
computer, because they are the subject of a geat deal of current experimen-

tal and theoretical research, and many properties are well understood.

Figure 6-2(a) illustrates a quantum device, the single electron transistor
(SET) which is the basis of single electron logic (see Altshuler et al. 1991,
Grabert and Devoret 1991, Tinkham 1995)[12] [16] [18]. The SET consists
of a small quantum dot coupled to the circuit via a pair of tunnel contacts,
as indicated, and an electrostatic gate. If the tunnel conductance of each
contact is small, G, < 2e2/h, the number of electrons on the dot is a good
quantum number. The charging energy necessary to place a single excess
electron on the dot is €2/2Cs, where Cy is the total capacitance of the dot.

This energy acts as a barrier to tunneling if the charging energy is much
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greater than the temperature, known as the Coulomb blockade. In the re-
gion of applied contact and gate voltages corresponding to the blockade, the
number of electrons on the dot is fixed, and can be used to represent a bit
of information. In single electron logic, transitions between charge states are
generally assumed to take place incoherently, so that all phase information

is lost and the computation is classical.

One can imagine forming a quantum computer from a collection of
quantum dots connected together into a circuit via tunnel contacts, elec-
tron waveguides, and electrostatic gates. Under ideal conditions the phase
coherence of the electron charge representing the logical bit would be pre-
served over the entire circuit, making quantum computation possible. To
date, phase coherence has been observed for tunnel-coupled double and triple
quantum dots in a GaAs/AlGaAs heterostructure (Waugh et al. 1995),(20]

but not for larger circuits.

As discussed above, both internal and external excitations act to destroy
phase coherence. As indicated in Figure 6-2(a), the lowest energy internal
excitations for quantum dots are typically single particle excitations with
energy spacing Ep/N, where Er is the Fermi energy, and N is the total
number of electrons on the dot. The level spacing is approximately uniform
as a consequence of disorder as for quantum chaotic systems (see Gutzwiller
1991) [17]. In order to avoid thermal excitation of single particle excitations
and loss of coherence, the temperature must be made much less than the

level spacing.

For two dimensional electron gases (2DEG) in high quality GaAs/AlGaAs
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heterostructures, the dominant external mechanism which destroys coherence
at low temperatures is electron-electron scattering (see Ando et al. 1982,
Altshuler et al. 1991) [13] [12]. The electron-electron scattering rate 1/7e is
temperature dependent, and has two parts, one due to particle-particle colli-
sions, and one due to collective charge fluctuations which can be thought of
as dephasing by Nyquist noise (see Altshuler et al. 1991) [12]. The electron-
electron scattering rate is sensitive to the geometry of the device, and dif-
fers for two-dimensional sheets, one-dimensional wires, and zero-dimensional
dots. For a two-dimensional electron gas in GaAs at the base temperature
of a typical dilution refrigerator ~ 10 mK, the coherence time is of the or-
der 7eon ~ Tee ~ 10 nsec. For a quantum dot isolated by tunnel contacts,
the coherence time could be considerably longer, because the scattering be-
tween electrons in the dot and extemal electrons is cut off by their physical

separation; no data in this limit are currently available.

An important figure of merit for quantum computers is the ratio of
coherence time to switching time. The switching time 74, for a quantum
dot is limited by the charging time 7rc = Cx/Gc necessary to charge the
dot through the tunnel contact conductance G. < 2¢?/h = 1/(12kQ2). For
quantum dots of size ~ 0.1m made using current lithography the switching
time is of the order 75, ~ 10 psec. Thus, at present, the coherence time
for single electron logic is a factor ~ 103 longer than the switching time,
with sizable uncertainties associated with operating temperature, and device
characteristics. This ratio could improve by orders of magnitude in the fu-
ture as improved technology permits the fabrication of small quantum dots

approaching the size of large molecules.
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Single flux quantum logic is based on the trapping of a single flux quan-
tum by a superconducting quantum interference device (SQUID), as indi-
cated schematically in Figure 6-2(b) (see Grabert and Devoret 1991, Tin-
kham 1995)(16] [18]. The SQUID consists of a superconducting ring which
traps magnetic flux via the Meissner effect, with a Josephson junction or
weak link throﬁgh which magnetic flux quanta can pass, either by activation
or by tunneling. It is interesting to note that a SQUID is approximately the
electromagnetic dual of a single electron transistor: the quantum of magnetic
flux trapped in the ring replaces the quantum of electric charge trapped on
the dot. As electronic devices, SQUID’s are far more highly developed than
SET’S, and they are available commercially for a number of applications.
Macroscopic quantum tunneling of single flux quanta through a Josephson
junction is a relatively recent discovery, and is not the basis of operation
of conventional SQUID’S. Macroscopic quantum coherence of a single flux
quantum tunneling coherently between two energetically equivalent states in
a SQUID has been searched for experimentally for a number of years, but

not yet observed.

The internal excitations of an ideal SQUID are quasi-particles produced
by excitation across the superconducting energy gap. For submicron super-
conducting devices, it is possible experimentally to freeze out quasi-particle
excitations entirely at a modest fraction of the superconducting transition
temperature, so that every electron is paired (Tuominen et al. 1992) [19].
Much less is understood about the loss of coherence of flux quanta in SQUID’s
than for electrons in semiconductors, and it is difficult to make quantitative

comparisons. At first one might think that the coherence of the supercon-
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ducting state itself is the relevant issue, and that the coherence times are
very long, but this is not the case. Each magnetic flux quantum which rep-
resent a bit of informafion in a single flux quantum or quantum computer is
a collective excitation of the superconducting ground state. Magnetic cou-
pling to nearby impurities or conductors can produce a loss of coherence.
The reason why macroséopic quantum coherence has not yet been observed
in SQUIDs at low temperatures is thought to be extemal dissipation due to

eddy currents in nearby metallic conductors (see Tinkham 1995) [18].

Solid state quantum devices are attractive candidates for use in quantum
computers of the future, because one can build on a large base of techno-
logical expertise. Incoherent quantum circuits — single electronics and single
flux quantum logic — are at the edge of current technology, and the coher-
ent quantum circuits needed for a quantum computer are just beginning to
be studied in research laboratories. The ratio of coherence time to switch-
ing time in current quantum devices is adequate in some cases to pen-nit
measurements on small circuits, but quantum computers that perform useful
tasks will require much larger ratios as discussed elsewhere in this report.
The construction of a practical quantum computer by any means probably
lies at least several decades in the future, so there is enormous uncertainly
conceming its architecture and the technology available at that time. The
capabilities of solid state quantum devices will likely continue to advance at a
rapid pace, driven by applications in convenfional computers and electronics,

and they may well prove to be useful for quantum computation.
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6.2 Optical Systems

Within the context of optical physics, the most promising candidates
for quantum logic and computation are currently systems in cavity quantum
electrodynamics (CQED), where the basic configuration is that of an atom
situated inside a resonant cavity [21]. The atom and cavity field interact via
a dipole coupling of the atomic transition moment to the electric field of the
cavity. For the case of coincident atomic and cavity resonance frequencies
(detuning 6§ = 0), the interaction energy AE = hg is expressed in terms
of the rate g for oscillation between atomic ground and excited states for
a single photon in the cavity (more specifically, g is half the Rabi nutation
frequency induced by a single photon for § = 0). Dissipation proceeds by
way of either atomic spontaneous emission at rate 7 or by cavity decay at
rate k, with now two rates replacing our previous single decay rate I'. The
condition (6-3) for strong coupling translates into a statement that a single
photon should drive coherent evolution over a time scale much shorter than
the time scale for dissipation (g >> (v,«)), which has been achieved in
CQED. We should emphasize that although the condition for strong coupling
is easy to express, the experimental realization of this regime has been a rare
event in physics. Because of this, a number of theoretical schemes have been
proposed for implementing quantum logic via CQED.[22] Indeed, the two
demonstrations to date of quantum logic at the level of single quanta, one
has been implemented via a nonlinear interaction between pairs of photons

which is mediated by an atom in a cavity.[23]
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More generally, in the setting of CQED the qubits can be either photons
(with internal state specified by polarization) or atoms (with nondegenerate
ground and excited states or with degenerate Zeeman levels). Conditional
logic can be achieved by either “absorptive” or “dispersive” type processes,
where the presence or absence of a photon (atom) leads to a different dynamic
for the evolution of the atom (photon). As a somewhat more quantitative
example, we consider low-loss dispersive interactions for which the atom-
cavity resonance frequencies are detuned by an amount é. The effective rate
x for coherent atomic evolution then becomes x = ¢2/6 for one intracavity
photon and x = 0 for no intracavity photons, so that internal atomic evo-
lution can be controlled by a single photon in the cavity. The requirements
for the dominance of coherennt evolution over dissipation are then stated
as (x = g2/6)T > 1 (i.e., the coherent interaction must do something non-
negligible during the interaction time T') and 1/T >> (7, ) (i.e., the time
taken for the interaction of atom and cavity field must be small compared
to the dissipative time scale), where T is the interaction time of atom and
cavity. For a sequence of operations, necessarily then the clock-cycle time

T, > T.

Independent of the cloak of quantum computation, important progress
has been made in the area of (CQED) over the past decade, with experiments
having been carried out in both the optical and microwave domains.[21] In the
microwave domain (20-50 GHz), Rydberg atoms are employed in supercon-
ducting cavities of extremely high quality factor (Q ~ 10'°). The coupling
frequency g/2m ~ 10kHz, so that the time scale for coherent evolution of

two qubits is of order 1073 sec. For circular Rydberg states v/2m ~ 5Hz,
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hence the ratio of damping time to that for resonant coherent evolution (for
6 =10)is g/(v,k) ~ 10® - 10* (1/Tp as in Equation (6-1)), which seems quite
promising. The interaction time T is set by the transit time of a thermal
atom through the resonant cavity and is such that ¢ T > 1, with however
(x = ¢*/6)T < 1. In principle, the interaction time T could be increased by
employing laser-cooled'atoms, but at the expense of fewer “ops” per decay
time. Note that a system with simultaneously all the best attributes of large
coupling and high Q and circular Rydberg states has not yet been operated,

but that one should be coming “on-line” soon.

On a somewhat less positive note, experiments in the microwave require
temperatures in the milliKelvin domain to eliminate thermal photons and
involve cavities of centimeter scale cooled with a dilution refrigerator (or 3He
evaporative cooling). Hence, although research in the microwave domain
offers interesting avenues for explorations with small numbers of qubits, it
seems doubtful whether systems involving large numbers (e.g., tens much

less thousands) of qubits would be possible in the foreseeable future.

In the optical domain, considerably larger values of the coupling fre-
quency g have been obtained (g/2r ~ 2 x 107 Hz) for interactions in small
optical cavities of very high finesse F' ~ 10° — 10%(Q ~ 108). The time scale
for coherent evolution of two qubits is then of order 10~ sec. For allowed
dipole transitions in the optical domain, v/2r ~ 5 x 10% Hz, so that the
ratios of damping times to that for coherent evolution (§ = 0) are g/y ~ 4
and g/k ~ 102, which are certainly smaller than the corresponding quantities

in the microwave domain. On the other hand, the product g7 is roughly ten
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times larger in the optical domain. Further, there are proposals for achieving
substantial increases both in the magnitude of the coupling rate g as well as
in the cavity Q by employing new types of optical cavities, with projected
values of g/y ~ 40 and g/k ~ 10* — 10°.[24] Although the value of g/
achievable in the optical domain will probably never rival that obtained in
the microwave, there are theoretical schemes that greatly mitigate the role of
excited-state spontaneous emission through the use of hyperfine ground-state
levels and so-called “dark-state” resonances that transfer population between
ground states via resonant excited-state interactions but (somewhat surpris-
ingly) without excited-state population. The effective atomic damping rate

can thereby be greatly reduced.

Relative to microwave schemes (or indeed to condensed matter systems),
optical cavity QED has the attractive features of the absence of a need for
a cryogenic environment. The much smaller wavelength seems to afford rea-
sonable opportunties for extensions to larger number of qubits. However,
a daunting prospect would be the simultaneous operation of thousands of
high finess cavities and the control of atom trajectories or photon paths to
interconnect the whole array. Fortunately, a very promising new scheme has
been proposed by P. Zoller and colleagues at the University of Innsbruck
in Austria.[25] Here a large number of atoms are placed at distinct sites to
interact with the field of a single cavity. Individual atoms serve as qubits
with information encoded in internal atomic states. Quantum registers for
the computer are formed from this arrray of atoms, with the overall quan-
tum state of the computer existing as an entangled state of the atom array.

Computation proceeds by a series of one and two bit interactions between
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the atoms. These interactions are accomplished via single photons in the
intracavity field (with which all atoms interact) and an array of “classical”
laser beams (which address selectively distinct pairs of atoms). Apart from
employing a single cavity, this scheme has the attractive features of exploiting
the aforementioned dark states (which greatly reduce the impact of atomic
dissipation) and of populating the cavity mode with a photon only briefly
during a transient period in the transfer of state information between atoms.
Zoller’s group has made a detailed theoretical investigation of this system
(including the impact of dissipation and the prospects for error correction)
for realistic experimental parameters, with promising results both for gate
operation (C-NOT) and for a “calculation” (a quantum Fourier transform

with 5 atoms).

In this section, we have stressed CQED systems in the context of atomic
physics. In addition to having achieved strong coupling, a promising aspect
of these systems is that they have been shown experimentally to be faithful
realizations of theoretical model systems, with defects in the correspondence
being reasonably well understood. Field states exhibiting manifestly quan-
tum or nonclassical photon statistics have been predicted theoretically and

observed experimentally.[26, 27]

Beyond the setting of CQED in atomic physics, there are other promis-
ing systems in CQED. In the context of condensed matter physics, we men-
tion in particular optical excitation of electron-hole pairs and interactions
of these excitons.[28] Although there has been burgeoning progress in recent

years with such systems (which are certainly promising for a variety of ap-
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plications, including quantum logic), strong coupling (in the sense defined
by Equation (6-3) with, for example, an appreciable nonlinear response for a
single intracavity photon) has not been achieved to date, nor have the interac-
tions been explicitly demonstrated to be sufficient to the task of generating
nonclassical field states, which would seem to be necessary conditions for
quantum logic at the single quantum level. Still, this is a rapidly developing

area which warrants attention for its potential.

6.3 Trapped Ions

Atomic ions can be held in vacuum in a radio-frequency electric trap
and cooled by laser fields to mK temperatures or less. A single cooled ion
under typical conditions moves in an orbit smaller than 0.1 um at the center
of the trap, and can be confined to the lowest zero-point vibrational mode
along one or more directions. In a recent achievement, a beryllium ion has
been cooled to zero-point motion in all 3 spatial dimensions and the basic
elements of a quantum logic gate have been demonstrated.[40] Groups of
ions in traps of suitable geometries can be cooled to form a single linear array,
with the spacing between adjacent ions determined by their mutual Coulomb
repulsion. Cooling of such arrays of ions to the quantum limit of zero point
motion has not yet been achieved, but is believed to be technically feasible

in the near future.

Proven techniques exist for selectively inducing transitions among the

vibrational states of the ions as well as among internal energy states of each
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indivdual ion, and for determining with nearly 100 % efficiency which vibra-
tional and internal state is occupied. The ions tend to remain in a selected
state because they are trapped in a high vacuum free of perturbing atomic
collisions and can be well shielded from stray external electric and magnetic

fields.

Therefore the means exist, or should exist shortly, for studying arrays of
ions in definite quantum states, and for creating quantum logic gates along
the lines proposed by Cirac and Zoller.[9] Below, we will describe enough of
the techniques of ion confinement, laser cooling, and ion state selection and
detection to allow an assessment of the main issues and limitations of ion

trapping for quantum computing.

It appears to us that the number of ions, with one qubit per ion, that
can be successfully utilized in quantum computing will steadily increase with
further research, perhaps reaching as many as 1000 ions with currently fore-
seeable technology. If such a level is reached, identifiable issues of vibrational
mode stability and isolation of the ions from external heating, as well as
general technical complexity, would likely make further progress much more

difficult.

6.3.1 Ions in a linear trap

Of the many trap configurations that have been tested, we concentrate

on the Paul linear trap, which is useful for confining an array of ions as
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needed in a quantum computer. In this kind of trap, radio-frequency fields
bind ions in the radial direction (perpendicular to the trap axis) and static
fields prevent escape along the trap axis. The linear trap is formed by a group
of four parallel conducting rods arranged symmetrically about the trap axis,
which is denoted here byz. As shown in Figure 6-3, diagonally opposite rods
are connected to a common potential, and an rf voltage is applied between
adjacent rods, creating a time-varying potential in the space between the rods
that can be approximated near the trap axis by an oscillating quadrupole
potential:

2

g '
. ] sin ¢, (6-7)

Vo
Vrf'__2"[1+

in which the z and y axes are oriented as shown in the figure and a is the

shortest distance from the z axis to the inner surface of each rod.

To see how radial confinement takes place, note that the magnitude of
the oscillating electric field in the xy plane increases linearly with distance
from the origin, leading to a corresponding increase in the driven amplitude
of oscillation of an ion (the so-called micromotion) as the ion moves further
from the trap axis. The energy of this micromotion creates an effective
potential energy that can bind the ion radially to the trap axis. In the usual
regime of operation, the size of the micromotion is much smaller than that
of the bound orbit, or equivalently, the orbit has a frequency of oscillation in
the radial direction, w,, that is much less than €2. In this limit, the effective

two-dimensional radio-frequency potential energy that binds an ion of mass

m is:
32V02 2 2 m o 9
Uit = g @ TV = 5@ (6-8)

where z,y locate the position of the ion (or more precisely the center of the
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Figure 6-3. Cross section of a linear quadrupole trap. An altemating f voltage VcosQt is applied to a
pair of diagonally opposite rods. The other pair of rods is maintained at rf ground.
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small micromotion that is superposed on the orbital motion of the ion), and

Wy = _ M
T VomQa?

o

As a numerical example, a **Ba* ion bound in a trap of size & a =
200um will have a well depth in the zy plane of 11 eV, and corresponding
oscillation frequency in this plane of w,/2r = 3 MHz, when an rf voltage of
Vo = 250 volts and frequency Q/2r = 25 MHz is applied between adjacent
rods. Note that 2 >> w, as required. In normal operation, Q > 5w,;

imposing this condition leads to a convenient expression for the required rf

voltage amplitude:

a 2w /27N ( Mion
Vo> (75 VOltS)(IOO/Lm) (SMHZ) (100amu>' (6-9)

To complete the linear trap the ions must also be confined to a region
of the z axis. It is possible to break up each of the 4 rods into segments
(keeping the rf potential along a given rod constant), and apply DC voltages
between segments to create an electrostatic potential that varies along z,
with a minimum at some point in the middle of the trap which we call
z = 0. Near this minimum the electrostatic potential has approximately a
quadrupole shape, leading to an electrostatic potential energy of the ion near
the origin,

m

Us = —w?[2® -

2 = S 1) (6-10)

2

where w, is the frequency of axial oscillations given by

W, = (2eV3/mz§)%,

120




with V; the on-axis electrostatic potential at 2 = +2z; relative to z = 0. If
2z is the length of the middle segment of the trap, then V; is approximately

equal to the applied DC potential difference between trap segments.

Combining Equations (6-8) and (6-10), the complete 3-dimensional po-

tential energy of an ion in the trap becomes:

U = Us+ Us = S0} (@® +97) + i) (6-11)
with
1
(wp)? = w? - §wf

Note the weakening of the effective potential well in the radial direction by

the addition of the static potential.

6.3.2 Laser cooling and interrogation of trapped ions

A trapped ion can be cooled by driving an optical transition between
ground and excited electronic states of the ion using a laser tuned somewhat
below resonance with the transition frequency. Through the Doppler effect,
there is a net loss of translational energy in each absorption and emission
cycle, and the ion motion in the trap is cooled. The ultimate Doppler cooling
limit is

kgT > hI'/2, (6-12)
where I'/27 is the frequency width of the laser cooling transition, often the
natural width of the excited state. A typical allowed-transition decay rate,

I = 108 sec™!, thus implies a limiting temperature of about 10 mK. I can be
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greatly reduced by using E2 (or M1) excitation to metastable states or using
stimulated Raman transitions between two near-by sublevels of the ground

state; in such ways, much lower ion temperatures have been achieved.

Because the ion motion in the trap is periodic, the Doppler effect (to first
order in v/c) actually produces an unshifted carrier laser frequency together
with sidebands separated by the frequency of ion oscillations (w. and/or
w,) along the light propagation axis. When the ion orbital size b becomes
small compared to the optical wavelength A, the so-called Lamb-Dicke regime,
most of the power is in the carrier; the nearest pair of sidebands has relative
amplitude = 2xb/ ). Further laser cooling can still be accomplished by tuning

the laser to the lower Doppler sideband.

In a few experiments, a single trapped ion has been cooled until at least
one vibrational mode is in the lowest quantum state, and recently a *Be*
ion was cooled to the quantum limit in all 3 dimensions. In the latter case,
cooling was accomplished by a Raman transition between the two hyperfine

sub-levels of the electronic ground state.

Arrays of 30 ions or more have been trapped in a linear Paul trap, cooled,
and observed to form a linear crystal chain along the trap axis. It appears
to be a challenging but straightforward extension of single-ion techniques to

cool such an array of ions to the zero point vibrational limit.

Individual ions are detected by their scattering of laser radiation. Usu-
ally what is observed is laser fluorescence on the same electronic transition as

is used for cooling the ion. This fluorescence can also be used to determine
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the internal state of the ion with nearly 100% efficiency, by employing the
technique of ‘shelving’. A shelving laser beam excites the ion to a metastable
or ‘dark’ state with a probablility depending upon which initial state the ion
is in. The ion is then illuminated for fluorescence, and the presence or ab-
sence of fluorescence determines whether the ion was initially in the state

that allowed it to be shelved to the metastable level.

6.3.3 Requirements for quantum computing

As discussed by Cirac and Zoller, a linear array of trapped ions offers
some interesting possibilities related to logic gates and quantum comput-
ing. N ions would give us N qubits, a qubit being identified with a pair of
long-lived internal atomic ion levels such as two hfs sub-levels (or Zeeman
sub-levels) in the ground electronic state. (A suitable pair might also be the
ground state and an excited metastable state, viz. the 6S and 5D states of
Ba*, though this pair is subject to extra perturbations from the quadrupole
trapping fields.) A laser beam could transfer an ion from one internal level
to another, using stimulated Raman transitions if the qubits are a pair of
ground state sub-levels. Thus the ions need to be separated by only a few
optical wavelengths in order to address different qubits independently, and as
mentioned later, even smaller separations might be permissible. The vibra-
tional coupling among the ions serves to link the qubits of different ions, and
to allow entangled quantum product states among the qubits to be created.
Cirac and Zoller illustrate the possibilities using the lowest frequency (center

of mass) longitudinal mode of vibration of a string of ions.
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In order for the Cirac-Zoller scheme to work, the ions must be placed
in nearly pure electronic and vibrational states, and remain free of sig-
nificant dissipative external perturbations over a complete quantum com-
putation cycle. The situation regarding the internal atomic ion states is
quite favorable. The coherence lifetimes can be several seconds or longer,
while optical transitioné between these states can be driven rapidly. The
cycling (Rabi) frequency, even on forbidden or Raman transitions, can be
Qrap = 27 x 107rad/sec using only modest laser power focused on a single
ion. Of course the laser power must be controlled quite accurately to induce
precise 7 /2, 2w, etc. pulses between states. The Cirac-Zoller proposal also
requires that the laser beam acting on any one of the ions drive a vibrational
transition of the entire linear array of ions. This coupling varies as N -3,
but the reduction in Rabi frequency for a given laser power should not cause

major problems.

Other than the sheer technical complexity of implementing the Cirac-
Zoller scheme with a large number of ions, the most serious issues seem to
be connected with the vibrational states of the ions, namely: 1. vibrational
mode-stability, 2. cooling to the vibrational quantum limit, and 3. outside
heating and dephasing of the vibrational modes; each of these issues we now

discuss.

1. Vibrational mode instabilities must be prevented.

To remain in a region of linear stability and prevent the onset of zigzag

modes, the ions in a linear trap must be confined much more strongly radially
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than axially. The onset of instability has been studied in numerical simula-
tions [see J. P. Schiffer, Phys. Rev. Lett. 70 818 (1993)]. Analytical results
in agreement with the numerical ones have been obtained by Dan Dubin of
UCSD [D. Dubin, Phys. Rev. Lett. 71 2753 (1993)] for a bound Coulomb
chain similar to the chain of ions in a linear Paul trap. For a linear chain
of N ions, N >> 1, Prof. Dubin finds that Az, the mean spacing between

ions, is given by

62 log, N
3 _ e _
(A2)” = <7r60mw§) ( N2 >’ (6-13)
and that the region of stability against zigzag modes occurs for
w:. 2 N2
(wz) > 0'1logeN' (6-14)

Combining this last equation with Equation (6-9), we find the following re-

quirement on the rf trapping voltage amplitude:

a 20w, /21 \2/ ™ N 2 rlog, 1000
Yo > (430 volts)\ 155, ) \ Tooktiz) \ T00amu )\ 1600 1oms) \Tog,

(6-15)

It thus appears possible using a trap of reasonable dimensions to confine up
to 1000 ions, or perhaps a few thousand, in a stable linear chain having an
axial center-of-mass vibrational frequency as high as 100 kHz. However, Vj
grows as N2 and quickly becomes prohibitively large as N is increased. The
spacing between ions is also an issue. It follows from Equation (6-13) that
even light ions such as °Bet would be spaced by only Az = 1.5um in a string
of 1000 ions, and thus barely resolvable optically. Although it is possible to
distinguish more closely spaced ions by using field gradients to shift resonance
frequencies of adjacent ions, or to redesign the trap to spread the ions out,
the ion spacing clearly becomes one more difficulty when increasing N beyond

a few thousand.
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2. The vibrational motion must be cooled to the quantum limit.

Thus the axial motion must be cooled below kgTi,ns = fw,, or below
Tions = 10uK for an axial frequency of 100 kHz. Thus far, cooling to the
quantum limit has been accomplished only at higher vibrational frequencies
and temperatures, 2 MHz and 50 1K in the case of 2D cooling of a single !%°Hg
ion, and = 10 MHz for 3D cooling of a °Be ion. Achieving the quantum limit
at a frequency as low as 100 kHz, with an array of hundreds or thousands of
ions, presents a truly formidable technical challenge, but one that may well

be met by normal evolution of current techniques.

3. The vibrational modes must be free of dissipative coupling or outside

heating for the duration of a complete quantum computation cycle.

Perhaps representative of the degree of isolation attained in current ex-
periments was the observed heating rate, Theq: = 102 vibrational quanta per
second, when °Be was cooled to the quantum limit. Improvement in isola-
tion by several orders of magnitude should be possible before approaching
any fundamental limitations posed by coupling to the trapping electrodes.
To get an idea of the isolation needed in quantum computing, we return to
Equation (4-1) and note that for J qubits and M ops, the internal ion (qubit)
states must be switched at a frequency Qgap > JMThear- But Qpap: cannot
be made arbitrarily large, because it is necessary that Qg << w, to prevent
mixing of the wrong vibrational levels and also to prevent energy shifts com-
parable to the vibrational splitting. Thus we require that w, >> JMTjeq.

As before, J and M will be functions of the algorithm employed. Assuming
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J ~Nand M ~ N3, we find that to use 1000 ions with an axial frequency of
100 kHz means that I'se,; would have to be much less than 10~7 quanta per

second.

Perhaps the ultimate limit on the number of ions that could be used in
this proposed method of quantum computing will depend upon the dissipa-
tion rate [heqs. If this rate can be made very slow, and lower ion tempera-
tures can be reached, then w, can be reduced to ease the restriction on N in
Equations (6-13) and (6-15). In that case Equation (6-15), with w? replaced
by J2M?T%,.,, would still offer a useful way of estimating the required rf

trapping voltage.
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7 RECOMMENDATIONS

Quantum computation represents a potentially profound development
with possibly far-reaching implications in both the physical and informa-
tion sciences. Unfortunately any definite assessment without qualifiers is
essentially impossible because of the dearth of significant results beyond the
brilliant quantum algorithms that Shor presented 1.5 years ago. While pro-
ponents of the field believe that the marriage of quantum mechanics and
information science is ripe with potential for prodigious progeny, this belief
currently rests on a very small set of truly significant results. If quantum
computation is to change the future of computation in a major way, then
there must emerge a much broader class of applications than are known
today. Without a more wide ranging set of possibilities, the impetus for
conquering the daunting issues associated with physical implementation is

to large measure lost.

Apart from the actual implementation of quantum computation, the
potential impact of this new paradigm on classical computation should not
be overlooked. It may be that new perspectives offered by the investigation
of quantum algorithms might well lead to more powerful classical algorithms.
Unlike the physical implementation of quantum computation which is at best
a long-term endeavor, such insight could more or less immediately advance

the state of the art of classical computation.

Within the context of the this outlook, our recommendations for possible
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ARPA support of research in the area of quantum computation are as follows.

1. Establish a research program to investigate possibilities for quantum
computation beyond Shor’s algorithms. Here we have in mind the
fostering of a fairly intense effort over the coming years to understand
the types of problems for which quantum computation is well suited
and whether or not new insights do indeed arise for developing more
powerful classical algorithms. The two principal communities involved
would probably be those of theoretical physics and computer science
(but not to the exclusion of other groups). Clearly, as new quantum
algorithms are developed, it will be essential to address the issue of

error correction as well.

2. Seed research in various communities for quantitative minimization of
algorithmic complexity and optimum circuit design. Given the extreme
value of qubits of information in terms of the degree of difficulty of phys-
ical realization, it is quite important to have explicit quantum circuits
with quantitative measures of resource requirements (beyond simply “a

- polynomial of order k”) in order to bridge the gulf between abstract
quantum algorithms and actual physical implementations. The JASON
quantum circuits provide an important step in this direction, even if
they prove to be less than optimum in the ultimate conservation of

qubits and ops.

3. Supplement ongoing experimental research related to the isolation and
control of discrete quantum systems suitable for quantum logic. Here

the research objectives might not be directly quantum computation,
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but might be instead fundamental aspects thereof such as the inves-
tigation of quantum dynamics in nontrivial Hilbert spaces (e.g., the
generation of quantum-state entanglement for more than two qubits
and the role of dissipation). Given the tremendous gulf between labo-
ratory capability and the requirements for a nontrivial implementation
of Shor’s algorithm, we would specifically advise against a program of
“prototype development”, but would rather supplement research on di-
verse fronts with modest goals rather disconnected from a “Holy Grail”

pursuit of quantum computation.

Overall, we feel that the most pressing need with also the greatest po-
tential is for a broad theoretical exploration for opportunities beyond Shor’s
algorithms. If the “well” proves to be “dry”, so be it. On the experi-
mental front, we do not believe that there is a similarly pressing need for
ARPA involvement. Although there are a variety of promising systems, the
most optimistic near-term hope would be only extremely modest “proof-of-
principle” demonstrations from which we doubt any profound new insights
would emerge. Therefore, we recommend that ARPA should not shoulder
the principal burden for funding of experimental efforts, which should not
in any case be justified solely for their relevance to quantum computation.
However, ARPA could play an important role in ensuring that the experi-
mental and theoretical communities remain engaged. Should an explosion
of possibilities ensue from the theoretical investigations, then it may well be
worthwhile to consider increasing the investment on the experimental front,
bearing in mind that the time horizon for the experimental realization of

quantum computation will still be distant.
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Finally, we would urge the adoption of a broad-minded view for oppor-
tunities other than those related to large-scale computation, such as might
arise in quantum cryptography or coherent nanoscale electronics. This is a
long-term endeavor of potentially profound significance where surprises are

likely to emerge on diverse fronts.
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