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A rough ball which conserves kinetic energy exhibits unexpected behavior after a single bounce
and bizarre behavior after three bounces against parallel surfaces. The Wham-O Super-Ball®
(registered by Wham-O Corporation, 835 E. El Monte St., San Gabriel, Calif. 91776), appears
to approximate this behavior and provides an inexpensive and readily available model of
kinematics quite different from that of a point mass or smooth ball. The analysis is most
strikingly illustrated by the fact that the ball returns to the hand after three collisions with
the floor, the underside of a table, and the floor. Some questions are raised concerning the

dynamics of the collision.

INTRODUCTION

“Angle of incidence equals angle of reflection”
is a commonly quoted but, of course, not uni-
versal result, and it is useful to demonstrate to a
freshman or high school physies class that real
objects exhibit behavior equally predictable but
in some cases quite different. In particular, a
perfectly rough ball which conserves kinetic en-
ergy behaves in such an unexpected way that it
is difficult to pick up after it has bounced twice
upon the floor, and, more bizarre, it returns to
the hand on being thrown to the floor in such a
way that it bounces from the underside of a
table as in Fig. 1.! It turns out that the two
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Fia. 1. A Super Ball seems to return to the hand after
bouncing against the underside of a table, while the ex-
pectation is for it to continue bouncing between the floor
and the table as shown by the dotted line.

assumptions of conservation of kinetic energy
and no slip at the contacting surfaces predict
qualitatively the observed behavior of the Super
Ball. 1t is not at first clear, however, how even

! This was first demonstrated to me by L. W. Alvarez
with a Wham-O Super Ball.
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a microscopically perfectly elastic body can con-
serve kinetic energy in such collisions, and this
is discussed later.

Two primary assumptions suffice to determine
the trajectories of the Super Ball: (a) Kinetie
energy is conserved during a collision (the rota-
tional plus the translational energy of the ball
is the same after ecollision as before). (b) There
is no glip at the point of contact (the ball is
“perfectly rough’’). Two further conditions fol-
low from the laws of mechanics: (¢) Angular
momentum L about the point of contact is con-
served during the collision. (d) The normal com-
ponent of velocity is reversed by a collision.
(¢) follows from the approximation that the
contact oceurs at a point and that all forces act
through that point, so their moment about that
point is zero. (d) follows from the assumption
of linear equations of motion and the observa-
tion that, in the special case of normal incidence
without spin, all kinetic energy after the colli-
sion must again be in the normal velocity, which
is therefore preserved with change of sign, as a
consequence of (a). Since the spin, the normal
velocity and the tangential velocity after collision
are all assumed to be linear functions of the
velocities before the collision, the cross coupling
between normal velocity and the other two de-
grees of freedom is shown by this special case to
be zero under all initial conditions.

Figure 2 shows the elementary collision against
a hard surface oriented in the xz plane. Before
collision, the body has a velocity V5 along z and
an angular velocity «, along z. Affer the bounce,
these variables become V, and w,, respectively.
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Fia. 2. The Super Ball has velocity Vi and spin oy before
bouncing from the xzz plane. After the bounce the velocity
and spin are V, and w. respectively. The normal velocity
along y is simply reversed in the collision.

The subseriptions b and o refer to conditions
before or gjfter a given collision.

I. COLLISION KINETICS

Let the moment of inertia about the 2 axis be
I=aMR? with a=2% for a uniform sphere. M is
the mass, and R the radius of the ball. Then the
kinetic energy, including only the spin « and the
x component of the velocity V, is

K =3M V2431w =M /2(V2+0wR2)

=M/2(VHal®, (D)

where C=wR has been introduced to simplify
the equations but in fact represents the (signed)
peripheral velocity of the ball’s surface adjacent
to the wall, relative to the center.

The angular momentum about the point of
contact is then (for the ball close to the wall)

L=lo—MRV=(aMRw—MRV)

=MR(aC—-V), (2)

in which I is expressed as the angular momen-
tum about the center of the ball plus that of
the center of mass about the point of contact.

Thus, equating the kinetic energy and the an-
gular momentum before and after a bounce, we
have

Ke=M/2(Vi+aCi?) = M/2(Vi+aC?) =K,
3)

and
Li=MR(aCy— V) =MR{(aC,~V,) =L, (4)

in which the velocities before are Vi, Cp and those
after are V,, C,. Equations (3) and (4) become

Vit aC?= V4ol 5
and
Vi—aCy=V,—aly; (6)
and simplification gives
a(Co— Co) (Cot-Co) = (Vo= Vo) (Vo Vi), (5
a(Co—Co) =— (Voa—V3). (67
Dividing, we obtain an interesting result,
Cot-Co=— (Vort- Vo),
or
Vet Co=— (Vot+-Ca), (7

showing that the parallel velocity of the contact-
ing portion of the ball, S=V--C, is precisely
reversed by a bounce.

Subtracting Eq. (7) from Eq. (6) we have

(a— 1) Cy— (a—i—l) Co= 2Vb,

or

Co=[(a—1)/(a+1)JCo—[2/(a+1)IVs; (8)
and resubstituting in Eq. (7) we find
o= —[20/(a+1)]Co—[(a—1)/(a+1) V5.
(9)

Equations (8) and (9) thus give the spin and
velocity after collision.

TFor example, if a spherical ball approaches the
wall with w=0, V,=V., ie. with no spin and
at an angle 6,=45° with respect to the normal,
then (=0 and

Co=(—10/7)V 4, Ve=3V4,
so that the ball on bouncing makes an angle
f,=tan"1(3/7) =23.2° with the outward normal
from the wall. [See Fig. 3(a).] Similarly, a ball
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Fic. 3. (a) A Super Ball with zero spin bounces from a
wall with tand, =3/7 tané, and with spin velocity 10/7 of
its initial horizontal velocity. (b) A ball with initial spin
has its spin velocity reduced to 3/7 and reversed, and
acquires transverse velocity as shown.

with initial spin velocity Cp but with no trans-
lational velocity V3 leaves the wall with

Co= —2Ch, Vo=—%0C
as indicated in Fig. 3b.

II. TRAJECTORIES

Equations (8) and (9), and assumption (d)
suffice to allow the path of a Super Ball to be
traced through any number of collisions with
rigid walls. One simply uses the geometry to
determine V3 and V. before any new collision,
from the V, and V. after the previous one. One
then applies Eqgs. (8) and (9), and assumption
(d) and reprojects the velocity to obtain the
initial velocities for the next collision.
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Fic. 4. A Super Boll makes three successive bounces be-
tween two parallel walls. The positive sense of velocity and
spin is shown before and after each of the three collisions.

If we cousider throwing the ball to the floor
and allowing it to bounce against the underside
of a table before bouncing again from the floor,
we have the situation of Fig. 4, with the coordi-
nate system of Fig. 1, except that for bounce 2,

GARWIN

the coordinates used are shown in the inset, in
order to employ the standard Egs. (8) and (9).
For a ball without initial spin (Cp=0), repeated
application of these equations gives Vi, Cia;
Vzb, 025; Vza, Cza; Vab, Ogb; and ﬁnally Vga, 03a~

Vie=—[(a—=1)/(a+1) 1V,
Cru=[—2/(a+1) 1V,
Va=[(a—1)/(a+1)]V,

_ _1\2
e - (2
a+1/\a+1 a+1

=[V/(a+1)*T4a—(a—1)*],

a— — 2 o—
o= () - Gnlem) v
=[V/(a+1)"I[—2(a—1) —2(a—1)],
Va=[V/(a+1)2][ (a—1)2—4a],
Cop= Caa.
Vie=[V/(a+1)*[—a*+15a2—15a+1].
Csa=[V/(a+1)*][—602+20a—6].
For a sphere a=%, and

333
Vie=— —= ¥,
3 343V

Thus a sphere returns after three bounces with

(10a)
(10b)

130
= — V.
Cu= 313

IS
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F1c. 5. A Super Ball thrown without spin will follow the
path indicated in 5(a) in bouncing from the floor te the
underside of a table and back to the floor. The tangent of
the angle of bounce is 39, greater than that of the angle of
incidence. For comparison, the trajectory of a body with
I=1MR? is shown in 5(b)—it returns precisely along its
initial path.

but 39 lower velocity than it had when it started.
An accurate reproduction of its trajectory is
presented in Fig. 5. It is worth noting? that a

2 R. Friedberg, private communication, December 1967.
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body with «=1 (e.g., a ball containing a central
high-density mass % that of the original ball)
returns without spin and parallel to the original
direction. Although gravity has been neglected
in this caleulation, its ineclusion changes nothing
50 long as the ball does in faet strike the under-
side of the table.

It is difficult to make all the required substitu-
tions accurately, and advantage may be taken of
the linear form of Egs. (8) and (9) to define a
collision matrix M such that the velocity after
a collision V, is related to the velocity before,
Vb, by

V.=M-V, (11)

in which V, and V, are row vectors with three
elements representing the parallel velocity V, the
peripheral velocity €, and the normal velocity
V., respectively. The collision matrix is then

(1—a)/(a+1) —2a/(a+1) 0

M=} —2/(a+1)  (e=1)/(e+1) 0
0 0 ~1
a—1 2a 0
=—1/(a+1)| 2 1—a O (12)
0 0 a+l

Equation (12) has been used in a computer pro-
gram to provide the data for Fig. 6, which shows

—of+1502—15a+1

Vae=1/(a+1)?=

0

—602+200— 6
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o} b
Fie. 6. (a) Shows the path of an ultraelastic rough ball.
(b) Shows the path of a smooth one inside a rigid square.

the trajectory of a Super Ball and of a smooth
ball within a unit square? In computing the
trajectories of Fig. 6, before applying the colli-
sion matrix, the computer after each collision
determines the point of impact of the next colli-
sion and transforms the eomponents of the veloe-
ity vector to a new wall-oriented frame of refer-
ence. This velocity transformation is done by
matrix multiplication by matrices Dy, D, Ds,
according as the next side struck is at angle /2,
w, or 3w/2 with respect to the previous side of
the square.

Following Romer* we could have obtained Eqgs.
(10) by repeated matrix multiplication: Vi,=
M'Vm; VZb=Dz'V1a; Vza.:M‘V2Z>; Voo =Dy Voo
Vi, =M Vy; or V=MD MD,MVy,. Here

-1 0 0
D2= O 1 0
6 0 -1

D; does not commute with M, the product of
the five matrices, giving

— 603+ 2002 — 6 0
of— 1502+ 15a—1 0 ,
0 —(at1)? |

which reduce to Kqgs. (10) for the special case Cyp=0.

3 The program was written in APLN\ 360 with the help of T. M. Garwin. A copy of the program and of the output for

the cases in Fig. 6 is available to anyone inquiring.

¢R. H. Romer, Amer. J. Phys. 35, 862 (1967). I am indebted to the referee, who called to my attention this
paper. My purpose is to explain the behavior of the Super Ball, but Romer’s elegant matrix treatment of binary one-
dimensional collisions could be applied directly to the exchange of energy between the two internal degrees of
freedom (velocity and spin) by a simple transformation. I record the algebra leading to Egs. (10) to motivate the use

of the matrices M and D.
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III. DISCUSSION

In going from Egs. (4) and (6) to Eq. (7),
we have tacitly excluded one solution, 1.e. Co= (5,
Ve="Vs In addition, we have nowhere overtly
used assumption (b) that there is no slip at the
point of contact. In fact, conservation of energy
[assumption (a)] as well as conditions (¢) and
(d) are consistent with this excluded solution,
which would indeed be predicted if there were a
frietionless slip between ball and wall. The ques-
tion is more complicated, however, as 1s apparent
from the result of Eq. (6), namely that the par-
allel velocity of the point of contact is just re-
versed by the chosen rough energy-conserving
collision. Clearly, if the rough ball were again
brought in contact with the wall immediately
after such an energy-conserving collision and were
held there for a similar time, the parallel surface
velocity would onece again reverse in this second
collision, and the ball would rebound just as if
it had been perfectly smooth and slipped freely.’
Bqually clearly, if the period of contact were
insufficient for the shear wave to penetrate
through the ball, the ball would be left in a state
of internal excitation (torsional vibration) which
would contradiet assumption (a), which assumes
that no energy is present In modes other than
those of uniform translation and of spin. Thus,
it seems likely that the striking behavior of the
Super Ball 1s due not so much to an extremely
low internal dissipation for elastic waves as it is
to a near equality between periods for a bounce

8 Indeed, M2=1, so that two bounces on the floor should
restore the initial parallel velocity and spin. I do not know
to what precision a real Super Ball recovers its initial spin
on the second bounce if, e.g., the initial parallel velocity is
ZEeT0.
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of the ball from the wall and for a torsional
oscillation of the ball. It is this further require-
ment on the relative speeds of compression and
shear waves which leads me to use the term
“ultraelastic” in this paper. Even for zero inter-
nal friction, the bounce can never really be
perfectly elastic because the higher modes of
vibration are not harmonically related to the
fundamental, and so it retains some excitation
after the bounce.

The conceptual model of a collision thus has
the normal velocity of the ball, upon contact,
undergoing a half-period of oscillation and thus
reversing. At the same time, the surface of the
ball in contact with the wall comes abruptly to
rest and a shear wave propagates into the ball,
and, reflecting from the free surface, reverses the
initial velocity of the surface near the wall. The
process 1s easy to imagine for a rough elastic
slab colliding with a wall, or for a spinning
sphere or disk, mounted on a fixed axis, the sur-
face of which is suddenly brought to rest. It is
simpler to think about a ring rather than a sphere
or other solid body. For a ring, =1, and Eq.
(12) shows that such a body transforms all its
energy of translation into spin (and vice versa)
at each collision.

Although the problem is too complex to be
treated here, it would be of some interest to
consider the dynamics of a collision in more quan-
titative detail, probably taking into account the
complete modal spectrum, in order to understand
ultimate [imits on elasticity of a collision.
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