MIT
Science, Technology, and National Security Working Group

Airborne Patrol to Destroy DPRK ICBMs in Powered Flight

Richard L. Garwin
IBM Fellow Emeritus
Voice: 914 945-2555; e-mail: rlg2@us.ibm.com
Theodore A. Postol
Professor Emeritus of Science, Technology, and National Security Policy
Voice: 617 543-7646; e-mail: postol@mit.edu
Washington, DC
November 27-29, 2017

Purpose and Motivations for the Airborne Patrol Against DPRK ICBMs

Abstract

\section*{Summary}

The DPRK has demonstrated missiles with near-ICBM range and tested underground nuclear or thermonuclear explosives of yield estimated to be 100 or even 250 kilotons-comparable in yield to many of the current U.S. strategic warheads. Although there is not evidence that the DPRK has mastered the technology of a ruggedized warhead and reentry vehicle that would survive the 60 G deceleration and heating of atmospheric reentry at ICBM range, they could do so in time. It is also not clear that any of the DPRK's nuclear weapons can yet be carried to ICBM range, but that also is only a matter of time. We sketch here an "Airborne Patrol System to Destroy DPRK ICBMs in Powered Flight" incorporating the well established MQ-9 Reaper (Predator B) remotely piloted aircraft (RPA), The Big Wing version of the MQ-9 has a loiter time of some 37 hours at 500 miles from its airbase in South Korea or Japan, carrying two Boost-Phase Intercept missiles assembled of available rocket motors, e.g., from Orbital ATK. A two-stage rocket would provide $4 \mathrm{~km} / \mathrm{s}$, with a 75 or 55 kg homing payload providing an additional 2.0 or $1.5 \mathrm{~km} / \mathrm{s}$ divert velocity, and carrying a 25 kg seeker that would home optically on the booster flame and the ICBM's hard body. All of the technologies needed to implement the proposed system are proven and no new technologies are needed to realize the system . The baseline system could technically be deployed in 2020, and would be designed to handle up to 5 simultaneous ICBM launches. The potential value of this system could be to quickly create an incentive for North Korea to take diplomatic negotiations seriously and to destroy North Korean ICBMs if they are launched at the continental United States. The proposed Airborne Patrol System could be a "first-step system" that can be constantly improved over time. For example, we have analyzed the system assuming that interceptors have a top speed of $4 \mathrm{~km} / \mathrm{s}$ with a 25 kg seeker. We believe that faster, or lighter and smaller interceptors can be built that would increase the firepower of the system and possibly its capability against somewhat shorter range ballistic missiles like the Nodong - which poses a threat to Japan. Since the Airborne Patrol System would be based on the use of drones that would loiter outside of North Korean airspace, the electronic countermeasures needed to defeat distant surface-to-air missile defenses would be easy to implement because of the long-range between the drones and the air-defense radars. The availability of relatively inexpensive high-payload long-endurance drones will also improve, along with the electronic countermeasures systems to protect them.

Key Patrol System Elements - Ballistic Missile Targets to Be Engaged Attack Interceptors Platforms for Attack Interceptors

North Korean Missiles and Satellite Launch Vehicles that Can Be Destroyed After Launch at Will

Estimated Weight and Propulsion Characteristics of $4+\mathrm{Km} / \mathrm{Sec}$ Airborne Interceptor that Uses Achievable Rocket Motor Technologies

Total Weight $=500 \mathrm{~kg}$

Interceptor with 25 kg Optical and Homing Payload and Additional $1.5 \mathrm{~km} / \mathrm{sec}$ Divert Velocity

Attack Interceptor with Kill Vehicle that has $\Delta V=2 \mathrm{~km} / \mathrm{sec}$

Attack Interceptor with Kill Vehicle that has $\Delta V=1.5 \mathrm{~km} / \mathrm{sec}$

Trajectories that Can be Flown by Interceptor with 25 Second Acceleration Time and $4 \mathrm{~km} / \mathrm{sec}$ Burnout Speed

Drone-Based Systems for Post-Launch Precision Tracking to Support Interceptor Homing

System Precision Tracking on Drones

- Each deployed interceptor carrying drone available for stereo viewing of boosting targets
- Focal plane array operating in the 3-5 micron wavelength band for above cloud tracking
- Focal plane array operating in the 0.5-2.2 microns wavelength band for see-to-the ground detection
- Small field-of-view focal plane array video in the visible wavelengths for tracking and kill assessment

Homing Sensor on Interceptor

- Focal plane array operating in the 3-5 microns wavelength band for long-range homing
- Megapixel visible or near-infrared focal plane array for accurate long-range images of target body
- Laser illuminator and lidar for endgame target details and range-to-target data

Geographical and Military Factors Relevant to the Deployment and Operation of the Attack System

Directions to Different Target Cities or Military Bases for the Hwasong-12 or Hwasong-14 Long-Range Missiles

Distance Travelled by Hwasong-12 and Hwasong-14 During the First 150 Seconds of Powered Flight

11

Distance Travelled by Upgraded Hwasong-14 Second Stage During the First 190 Seconds of Powered Flight (40 Seconds After Staging))

Powered Flight and Initial Coast Trajectories of the First Stage and Payload of an Upgraded Hwasong-14 North Korean ICBM*

The upgraded Hwasong-14 assumes a second stage that uses four vernier motors from the R-27 SLBM. The actual Hwasong-14 tested on July 4 and July 28,2016 has only two vernier engines and has an upper stage powered flight time twice as long as the presumed "upgraded" Hwasong-14 shown here.

Early Powered Flight and Initial Coast Trajectories of the First Stage and Payload of an Upgraded Hwasong-14 North Korean ICBM*

* The upgraded Hwasong-14 assumes a second stage that uses four vernier motors from the R-27 SLBM. The actual Hwasong-14 tested on July 4 and July 28, 2016 ha 5 .
only two vernier engines and has an upper stage powered flight time twice as long as the presumed "upgraded" Hwasong-14 shown here.

Shoot-Down Capabilities Against ICBMs and Satellite Launch Vehicles

Interceptor Lethal Engagement Range against the Hwasong-12 or the First Stage of the Hwasong-14 Is About 285+ Kilometers

Interceptor Lethal Engagement Range against the Hwasong-14 During Early Powered Flight of Its Second Stage Is About 390+ Kilometers

Interceptor Lethal Engagement Range against the Hwasong-14 During Early Powered Flight of Its Second Stage Is About 390+ Kilometers

Drone Patrol Patterns against the Hwasong-14 Intercept of Its Second Stage During Early Powered Flight Is About 390+ Kilometers

Drone Patrol Coverage against the Hwasong-14 Intercept of Its Second Stage During Early Powered Flight Is About 390+ Kilometers

21

Impact Areas of the Hwasong-14 Debris after Being Hit at Different Times After Launch

APPENDIX

Capabilities in War

If War Starts - GO IN AFTER THE NODONGS! Interceptor Lethal Engagement Range against the North Korean Nodong

APPENDIX

A Key Enabling Technology Near Instantaneous Launch Detection and Tracking from Satellites

The Space-Based Infrared Satellite (SBIRS) Geosynchronous Spacecraft

Satellite Features

- A2100 derived spacecraft, 12-year design life, 9.8-year MMD
- $\sim 10,000-\mathrm{lb}$ predicted wet weight at launch
- 3-axis stabilized with 0.05 deg pointing accuracy; solar flyer attitude control
- RH-32 rad-hardened single board computers with reloadable flight software
- ~ 2800 watts generated by GaAs solar arrays
- GPS receiver with Selected Availability Secure Anti-Spoof Module (SAASM)
- $\sim 1000-\mathrm{lb}$ infrared payload: scanning and staring sensors
- 3 colors: short-wave, mid-wave, and see-to-ground sensor-chip assemblies
- Short Schmidt telescopes with dual optical pointing
- Agile precision pointing and control
- Passive thermal cooling
- Secure communications links for normal, survivable, and endurable operations 100 Mbs data-rate to ground
~500+ lb Infrared Sensor Payload: Scanning and Staring Sensors
SWIR~2.69-2.95 $\mu \mathrm{m}$, MWIR~4.3 $\mu \mathrm{m}$, and 0.5-2.2 $\mu \mathrm{m}$ (see-to-ground)

http://www.air-and-space.com/20050914\ VAFB\ Minuteman.htm

Blur circle

At each event: - Forward scattering - Absorption

Optical/Short Wave Infrared Observations of Missiles in Powered Flight Above and Below Heavy Cloud Cover

High Spatial Centroid Determination Achieved by Dithering and/or Pixel-to-Pixel Intensity Interpolation Achievable Sensitivity Against Sun Backgrounds ~ 10^{-5} to 10^{-6}
Achieved by Frame-to-Frame Subtraction and by Temporal Signal Variations at Ignition and During Powered Flight Even DSP Could Easily See Aircraft and SCUD Signals Against Backgrounds ($20 \mathrm{~kW} / \mathrm{sr}$ in-band)

MODTRAN 4 Transmission Calculation 2 km Thick Cumulus Cloud Zoom in on Previous

Good cloud transmission bands from 0.5-2.2 $\mu \mathrm{m}$

Clear Air

Hot Sources at Various Altitudes Raw Source Radiance

Short-Wave Infrared Missile Launch Signals $(2.7 \mu \mathrm{~m})$ from the DSP Satellites during the Gulf War of 1991 show that SCUD Ballistic Missiles Were Detectable within 20 Seconds of Their Launch

Today's Capabilities with the Space-Based Infrared System (SBIRS)
Allows for Detection of Missile Launches within A Few Tenths of Seconds after Engine Ignition

Representative SWIR \& STG Intensity and Duration of IR Events

SBIRS Transformational Capability
Col. Roger Teague
Commander, Space Group
Space Based Infrared Systems Wing
space and Missile Systems Center
30 November 2006

Time and Intensity Axise for SBIRS Deducedlfrom Basic Information on the Intensities and Time-Durations of Different Infrared Targets

Figure 4. Targat intenaity. (Pfgure elasalfled sifreit)

Intensity-Time Histories of Russian and US Ballistic Missiles

APPENDIX

Interceptor Performance Tradeoffs Are Very Flexible for a Fully Optimized System

41

Trajectories that Can be Flown by Interceptor with 25 Second Acceleration Time and $5 \mathrm{~km} / \mathrm{sec}$ Burnout Speed

Potential Weights and Burnout Speeds for Interceptors with Kill Vehicle that has a $2 \mathrm{~km} / \mathrm{sec}$ Divert and 15G Acceleration at Homing Endgame

Baseline Kill Vehicle Assumes Homing and Homing Guidance and Control Section Weighs 25 kg
Potential Increase in Burnout Velocity for a Kill Vehicle of the same weight but lighter Homing Homing Guidance and Control Section scales as follows:

$$
\mathrm{V}_{\text {New }} \approx \mathrm{V}_{0} \times\left[\frac{\mathrm{W}_{0}}{\mathrm{~W}_{\text {New }}}\right]^{1 / 3} \text { where } \mathrm{V}_{0}=4 \mathrm{~km} / \mathrm{sec} \text { and } \mathrm{W}_{0}=25 \mathrm{~kg}
$$

Example1: Baseline Interceptor that propels to $4 \mathrm{~km} / \mathrm{sec}$ a KV capable of $2 \mathrm{~km} / \mathrm{sec}$ divert and Maximum Endgame Acceleration of 15 G Weighs $\sim 650 \mathrm{~kg}$. What would be the potential burnout speed of an interceptor of roughly the same total weight that had a Homing Guidance and Control Section that weighs $12.5 \mathrm{~kg}\left(\mathrm{~W}_{\text {New }}=12.25 \mathrm{~kg}\right)$ rather than $25 \mathrm{~kg}\left(\mathrm{~W}_{0}=25 \mathrm{~kg}\right)$?

$$
V_{0} \times\left[\frac{W_{0}}{W_{\text {New }}}\right]^{1 / 3}=4 \mathrm{~km} / \mathrm{sec} \times\left[\frac{25 \mathrm{~kg}}{12.25 \mathrm{~kg}}\right]^{1 / 3}=4 \times[2]^{1 / 3}=4 \times 1.26 \approx 5 \mathrm{~km} / \mathrm{sec}
$$

Baseline Kill Vehicle Assumes Homing and Homing Guidance and Control Section Weighs 25 kg and with a burnout velocity of $4 \mathrm{~km} / \mathrm{sec}$
Potential Increase potential total weight of different interceptor with same burnout velocity and Kill Vehicle with same divert velocity and peak endgame acceleration but lighter Homing Guidance and Control Section scales as follows:

$$
\text { Interceptor Weight }_{\text {New }}=\text { Interceptor Weight }_{0} \times\left[\frac{W_{\text {New }}}{W_{0}}\right] \text { where Interceptor Weight }{ }_{0}=650 \mathrm{~kg} \text { and } W_{0}=25 \mathrm{~kg}
$$

Example2: Baseline Interceptor that propels KV capable of $2 \mathrm{~km} / \mathrm{sec}$ divert and Maximum Endgame Acceleration of 15 G to $4 \mathrm{~km} / \mathrm{sec}$ a KV Weighs $\sim 650 \mathrm{~kg}$. What could be the total weight of a different interceptor with the same burnout velocity and Kill Vehicle divert and acceleration characteristics with a Homing Homing Guidance and Control Section that weighs $12.5 \mathrm{~kg}\left(\mathrm{~W}_{\text {New }}=12.25 \mathrm{~kg}\right)$ rather than $25 \mathrm{~kg}\left(\mathrm{~W}_{0}=25 \mathrm{~kg}\right)$?

$$
\text { Interceptor Weight }_{\text {New }}=\text { Interceptor Weight }_{0} \times\left[\frac{\mathrm{W}_{\text {New }}}{\mathrm{W}_{0}}\right]=650 \mathrm{~kg} \times\left[\frac{12.5 \mathrm{~kg}}{25 \mathrm{~kg}}\right]=325 \mathrm{~kg}
$$

APPENDIX

Survival of Drones Against Long-Range Surface-to-Air Missile Attack is Assured by Fully Tested Electronic Countermeasure Technologies

Drones Protected by Towed Electronic Decoys Proven Technology: Uses Digital Radio Frequency Memories to Retransmit Homing Missile Signal Causing Interceptors to Home on Decoy

Relatively Inexpensive ECM Countermeasures Can Be Used in Standoff Patrols to Protect Drones from Surface-to-Air Missile Attack

North Korean Air Force Fighters that Could Theoretically be a Threat to the Airborne Patrol

North Korean Combat Aircraft

Aircraft	Origin	Type	Variant	In service	Notes
MiG-29	Russia	multirole		35	
MiG-21	Soviet Union	fighter		26	
MiG-23	Soviet Union	fighter-bomber		56	
Sukhoi Su-7	Soviet Union	fighter-bomber		18	
Sukhoi Su-25	Russia	attack		34	
Shenyang F-5	People's Republic of China	fighter		106	derivative of the MiG-17
Shenyang J-6	People's Republic of China	fighter	F-6	97	license built MiG-19
Chengdu J-7	People's Republic of China	fighter	F-7	120	license built MiG-21

North Korean Air Force Fighters that Could Theoretically

 be a Threat to the Airborne Patrol

The SA-5 Gammon is the Only North Korean Air-Defense Interceptor that Could Reach Airborne Patrol Drones

Name	Origin	Type	In service
SAM			
S-200	Soviet Union	SAM system	75 missiles
S-125 Neva/Pechora	Russia	SAM system	300 missiles
S-75 Dvina	Soviet Union	SAM system	1950 missiles
SA-7	Russia	MANPADS	4000 units

The North Korean S-200 Surface-to-Air Missile System Acquisition, Height Finding and Engagement Radars are All Mechanical Scanning and Vulnerable to Standoff Jamming

NITEL 5N84AE Oborona-14 / Tall King C Acquisition Radar

PRV-17 Odd Pair Heightfinding Radar

Implementation of Standoff Jamming Against the North Korean S-200 Surface-to-Air Missile System Acquisition and Height-Finding Radars

