FAS | Space Policy | Star Wars | Programs |||| Index | Search |



Arrow TMD

Israel began work on a potential theater missile defense (TMD) system in 1986, with the signing of a Memorandum of Understanding (MOU) with the United States. While the threat posed by ballistic missiles has been a concern for Israel since the mid-1980s, Iraqi ballistic missile attacks during the Gulf War underscored the danger posed by the buildup of missile technology in the region. Given the lack of available Israeli resources for TMD development, the United States agreed to co-fund and co-develop an indigenously-produced Israeli TMD system. In 1988, the US and Israel began what was to evolve into a three-phase program to develop the ARROW series of Anti-Tactical Ballistic Missiles (ATBMs).

Arrow II is intended to satisfy the Israeli requirement for an interceptor for defense of military assets and population centers and will support US technology base requirements for new advanced anti-tactical ballistic missile technologies that could be incorporated into the US theater missile defense systems. The Arrow missile, a joint international project with Israel, is a long-range interceptor that offers the United States technology infusion, including lethality data; development of optical window technology applicable to both THAAD and Navy Area Defense programs; data from stage separation at high velocities and dynamic pressures; and, interoperability development that will allow synergistic operations of Arrow with US TMD systems, if required in future contingencies.

The Citron Tree battle management center, built by Tadiran, guides the Arrow 2 interceptor, developed by Israel Aircraft Industries' MLM Division. The entire anti-tactical ballistic missile project is called Homa.

The Arrow 2 system can detect and track incoming missiles as far way as 500 km and can intercept missiles 50-90 km away [some sources suggest the engagement range is 16 to 48km]. The Arrow 2 uses a terminally-guided interceptor warhead to destroy an incoming missile from its launch at an altitude of 10 to 40km at nine times the speed of sound. Since the missile does not need to directly hit the target--detonation within 40-50 meters is sufficient to disable an incoming warhead. The command and control system is designed to respond to as many as 14 simultaneous intercepts.

Comprised of three phases, this intiative began with the Arrow Experiments project (Phase I) that developed the preprototype Arrow I interceptor. Arrow I provided the basis for an informed GOI engineering and manufacturing decision for an ATBM defense capability.

The Phase II ARROW Continuation Experiments (ACES) Program was a continuation of Phase I, and consisted of critical lethality tests using the Arrow I interceptor with the Arrow II warhead and the design, development and test of the Arrow II interceptor. The first phase of ACES, completed in the third quarter FY 94, featured critical lethality tests using the Arrow I interceptor with the Arrow II warhead. Since program initiation in 1988, Israel successfully improved the performance of its pre-prototype Arrow I interceptor to the point that it achieved a successful intercept and target destruction in June 1994. The ACES resulted in a successful missile target intercept by a single stage ARROW-1 interceptor. The second phase of ACES consisted of the design, development and test of the Arrow II interceptor, which achieved two successful intercepts of simulated SCUD missiles on August 20, 1996 and March 11, 1997. The ACES Program ended in FY 1997, upon the completion of ARROW intercept tests.

The third phase is the Arrow Deployability Project (ADP), which began in FY96, aimed at integrating the entire ARROW Weapon System (AWS) with a planned User Operational Evaluation System (UOES) capability. Continuing through 2001, the ADP will be the cornerstone for US/Israeli BMD cooperation. The Arrow Deployability Program involves a total commitment of $500 million over five years, with $300 million contributed by Israel and $200 million from the United States. This will allow for the integration of the jointly developed Arrow interceptor with the Israeli developed fire control radar, launch control center and battle management center. This project will pursue the research and development of technologies associated with the deployment of the Arrow Weapon System (AWS) and will permit the GOI to make a decision regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort will include system-level flight tests of the US-Israeli cooperatively developed Arrow II interceptor supported by the Israeli-developed fire control radar and fire control center.

After US planning activities in FY 94/95, the Arrow Deployability Project (ADP) pursued the research and development of technologies associated with the deployment of the Arrow Weapon System and to permit the Government of Israel to make a decision on its own initiative regarding deployment of this system without financial participation by the US beyond the R&D stage. This effort included three system-level flight tests of the Arrow II interceptor and launcher supported by the Israeli-developed fire control radar and battle management control center. Studies will be done to define interfaces required for Arrow Weapon System interoperability with US TMD systems, lethality, kill assessment and producibility.

Prior to obligation of funds to execute ADP R&D efforts, the President must certify to the Congress that a Memorandum of Agreement (MOA) exists with Israel for these projects, that each project provides benefits to the US, that the Arrow missile has completed a successful intercept, and that the Government of Israel continues to adhere to export controls pursuant to the Missile Technology Control Regime (MTCR). Subsequent US-Israeli cooperative R&D on other ballistic missile defense concepts would occur in the future.

Although there is a general policy of denial for Category I missile programs as defined in the the Missile Technology Control Regime (MTCR) guidelines, an exception has been made for the Arrow theater missile defense program. In the Arrow program, the challenge the United States faces is to transfer capabilities to defend against missile attacks without releasing technologies for manufacturing missiles.

In a test in September 1998 the Arrow 2 simulated an intercept against a point in space 97 seconds after being fired from the Palmachim military base south of Tel Aviv. The first integrated intercept flight test was successfully conducted in Israel on 01 November 1999. The Green Pine radar detected a Scud-class ballistic target and the Citron Tree battle management center commanded the launch of the Arrow II interceptor and communicated with it in-flight to successfully destroy the incoming missile.

An interface has been developed and delivered in Israel for AWS interoperability with US TMD systems based on a common JTIDS/Link-16 communications architecture and message protocol. The BMDO-developed Theater Missile Defense System Exerciser (TMDSE) will conduct interactive simulation exercises to test, assess, and validate the JTIDS-based interoperability between the AWS and US TMD systems. Once the TMDSE experiments are completed in FY01, the AWS will be certified as fully interoperable with any deployed US TMD systems.

Israel plans to defend itself against short- and medium-range ballistic missile attacks with two Arrow 2 batteries located at only two strategic sites. The first pair of Arrow Weapon System (AWS) batteries was deployed in Israel in early 2000. Israel deployed several batteries of Arrow-2 anti-missile missiles [according to some reports along the Israeli- Lebanese borders], with the newly developed missile defense system entering operation on 12 March 2000. According to its original 1986 schedule, the Arrow system was aupposed to enter operational service in 1995.

Israel had originally planned to deploy two Arrow 2 batteries but has since sought and won promises of funding for a third battery. The US Congress approved the funding of $81.6 million toward the cost of a third batteries. Each battery reportedly costs about $170m.

The joint US-Israeli project, which includes missiles, interceptor launcher batteries, the Green Pine radar and the Citron Tree fire-control system, cost $1.3 billion to develop. The final bill is expected to be double the billion dollars spent so far. This cost could be reduced if the Arrow 2 is sold to other countries which have expressed interest - such as Great Britain, Turkey, Japan and reportedly India.


Arrow-2 Test Launch
February 20, 1996 (43K)

Arrow-2 Test Launch
August 20, 1996 (37K)

Resources

  • FY01 PEDS - 0603875C International Cooperative Programs
  • FY00 PEDS - 0603875C International Cooperative Programs
  • FY98 PEDS - 225996B Israeli Co-Operative Projects
  • FY98 PEDS - 2259OBAQ Israeli Co-Operative Projects
  • FY97 PEDS - 2259 Israeli Cooperative Projects
  • U.S. - Israeli Arrow Deployability Project



    FAS | Space Policy | Star Wars | Programs |||| Index | Search |


    http://www.fas.org/spp/starwars/program/arrow.htm
    Maintained by Webmaster

    Updated Wednesday, June 28, 2000 8:02:28 AM