
1

Richard L. Garwin
IBM Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

(914) 945-2555

February 2, 1981

FILE

The "imperfect coin" is indispensable to the discussion of
probability, and it or its electronic analog is useful in
Monte Carlo calculations, and the like. Here I describe an
"efficient imperfect coin," which may be new to some who
read this. In short, it allows a perfect coin flipped an
average of two times to mimic an imperfect coin for which an
arbitrary probability of obtaining "heads" has been
prescribed.

I shall first describe the algorithm, then give the
self-evident proof, and finally mention two applications.

Let the prescribed probability of obtaining "heads" on a
single toss of the (conjectured) imperfect coin be M. Write
M as a binary fraction-- i.e., a real number beginning
"0.xxxx...," where the "x" are either 1 or 0, and the
fraction may terminate or not, as the case may be. This
representation of M may be truncated to the number of binary
places which give the desired accuracy. Thus, the bits of M
beginning from the binary point are identified as M(i).

Now flip a perfect coin, assigning binary "1" to a "head"
and "0" to a "tail." Let the sequence of heads and tails be
represented by the emerging binary fraction F(i). After
each flip, i, compare F(i) with M(i). If they disagree,
stop. The imperfect coin toss is complete. If they
continue to agree, proceed until the first disagreement.
The disagreements may be of two types, interpreted as
follows: If F is 0 when M is 1, then the imperfect coin is
stated to show heads, If F is 1 when M is 0, the imperfect
coin is stated to show tails.

The expected number of flips to the first disagreement (for
an untruncated, non-terminating M) is evidently the sum over
i of i*(0.5)**i. As promised, this sum is 2. So we have
prescribed an algorithm which in an average of 2 tosses
mimics precisely the results of a single flip of a coin with
prescribed imperfection.

The proof is simple. For any prescribed (truncated)
accuracy of P binary places, the 2**P possible outcomes of P
flips of the true coin are represented by the 2**P points on
the number line from 0 to (but not including) 1. The
truncated M is represented as a position on the number line.
All points on the number line are equally probable to arise

2

in a single sequence of P flips of a true coin. Therefore,
the probability of finding an outcome which is strictly less
than M equals M itself. If one imagines that one has
performed P flips of the true coin, one can subtract F from
M and call the simulated imperfect coin H(heads) if
M - F > 0, and tails otherwise. But one need not perform
the substraction to see which is bigger. One may compare
M(i) with F(i) for i = 1, 2..., stopping with the first
disagreement. The rule given above obviously is equivalent
to subtraction and branch on 0. Q.E.D.

In a computer implementation, of course one may have
available a set of random numbers, considered here as a
sequence of random bits. Obviously, one need not generate
the random bits as they are inspected, but can draw them
from a previously-generated and tabulated store of bits.

Two examples may be of interest. The first is a homey one
which does not use a computer. Thus, if I owe someone $7.94
for dinner and have only a $20 bill and must leave
immediately, never to communicate with that person again, we
may agree that it is acceptable for me to play a game with
that person, in which he/she has a $7.94/$20 chance of
winning. Thus, we require an imperfect coin with precisely
those odds of coming up heads; a single flip of the coin
would then discharge my debt. Thus, we would convert that
ratio into a binary fraction, and apply the above algorithm
with the expectation of requiring only two tosses of a real
coin.

A second, more serious application is for instance in
computer simulation of dense interacting molecular systems.
In the pioneering work of Metropolis, Von Neumann,
Rosenbluth, et al, they approached the simulation problem
from the starting point of generating all possible points in
phase space, and then accepting them for the ensemble with
the probability exp(-E/kT). The only problem, of course,
that that configurations generated at random have such a
small chance of being accepted that one could run a computer
forever without finding an acceptable configuration (for
reasonably dense systems with hard-core interactions). They
solved this problem by starting from a more-or-less regular
array, with little overlap, and then moving each atom in
turn by a small step, accepting the new configuration with
probability as given before. The size of the step can be
selected to provide a reasonable probability of acceptance.
The acceptance may be imagined performed with a single flip
of an imperfect coin with the probability of heads as given.
The algorithm above can determine that acceptance simply by
the inspection of 2 bits (on the average) from a stock of
random numbers.

A note on the history of this algorithm. I doubt that I am
the first to conceive this algorithm. It occurred to me
some twenty years ago by a very complex process of reducing
the number of coin flips required to obtain arbitrary odds
by a method involving partial binary fractions. The

3

procedure was precisely that given above, but my explanation
was so convoluted that eyes glazed before I finished the
motivation and the proof. In trying to simplify the
presentation, the mapping on the number line came to mind.
I have discussed the algorithm in essentially this form
since about 1974, and I believe that it appears in
publications of Knuth and also of Martin Gardner, who may
have obtained it from an independent source. I make no
claim to originality, but I believe the result should be
more widely known.

RLG:mla:033'FILE:020281FILE

